
DSC 140B - Homework 02
Due: Wednesday, April 19

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

Suppose (just like in the last homework) that in a group of 1000 people, 600 currently live in California and
400 currently live in Texas. In any given year, 5% of the people living in California move to Texas, and 3%
of the people living in Texas move to California. You may assume that the people do not move to any other
states.

We can represent the current number of people living in California and Texas with a population vector :

~p = (# in California,# in Texas)T .

The initial situation described above is represented by the population vector (600, 400)T .

a) Let ~f(~p) be the linear transformation which takes in a current population vector, ~p = (c, t)T , and
returns the population vector after one year has passed. In part (b) of the corresponding problem on
the last homework, you should have found the following formula for ~f with respect to the standard
basis:

~f(~p) = (.95c+ .03t, .05c+ .97t)T

Write the matrix A representing ~f with respect to the standard basis.

Solution: For the columns of A we use the vectors ~f(ê(1)) and ~f(ê(2)). So we start by computing
them:

~f(ê(1)) = ~f((1, 0)T)

= (.95, .05)T

~f(ê(2)) = ~f((0, 1)T)

= (.03, .97)T

And so the matrix representing this transformation (in the standard basis) is:

A =

(
.95 .03
.05 .97

)

b) Using a matrix multiplication, find the population vector after one year has passed, given that the
initial population vector is (600, 400)T . Your result should not contain decimals.

1

Solution:

A~x =

(
.95 .03
.05 .97

)(
600, 400

)
=

(
.95× 600 + .03× 400
.05× 600 + .97× 400

)
=

(
582
418

)

c) In part (f) of the last homework, we saw that two eigenvectors of A are

~u(1) =

(
375
625

)
~u(2) =

(
1
−1

)
Verify that these are eigenvectors of the matrix A by performing the matrix multiplication.

Solution:

A~u(1) =

(
.95 .03
.05 .97

)(
375
625

)
=

(
.95× 375 + .03× 625
.05× 375 + .97× 625

)
=

(
356.25 + 18.75
18.75 + 606.25

)
=

(
356.25 + 18.75
18.75 + 606.25

)
=

(
375
625

)
So ~u(1) is an eigenvector with eigenvalue 1.

A~u(2) =

(
.95 .03
.05 .97

)(
1
−1

)
=

(
.95× 1 + .03×−1
.05× 1 + .97×−1

)
=

(
.95− .03
.05− .97

)
=

(
.92
−.92

)
= 0.92

(
1
−1

)
So ~u(2) is an eigenvector with eigenvalue 0.92.

d) Write the matrix AU of the linear transformation ~f with respect to the basis U = {~u(1), ~u(2)}.

Solution: The matrix has as its columns [f(~u(1))]U and [f(~u(2))]U .

2

We know already that f(~u(1)) = ~u(1), which means

[f(~u(1))]U = (1, 0)T .

Similarly, f(~u(2)) = 0.92~u(2), so
[f(~u(2))]U = (0, .92)T .

Therefore:
AU =

(
1 0
0 0.92

)

e) In part (f) of the last homework, you found that the initial population vector ~x = (600, 400)T expressed
in the new basis has coordinates [~x]U = (1, 225)T .

Compute AU [~x]U and then convert the resulting to a coordinate vector in the standard basis.

Hint: your result should be familiar.

Solution:

AU [~x]U =

(
1 0
0 .92

)(
1
225

)
=

(
1

.92× 225

)
=

(
1

207

)

This is telling us that ~f(~x) = 1~u(1) + 207~u(2). Therefore, in the standard basis:

~f(~x) = ~u(1) + 207~u(2)

=

(
375
625

)
+ 207

(
1
−1

)
=

(
375 + 207
625− 207

)
=

(
582
418

)

Problem 2.

Let g(~x) = g(x1, x2) = 4x2
1 + 3x2

2 + 10x1x2, where we’ve defined ~x = (x1, x2)
T . In this problem, we will

consider maximizing g subject to the constraint x2
1 + x2

2 = 1.

You saw how to solve optimization problems like this in your multivariate calculus class using the method of
Lagrange multipliers. Informally-speaking, the idea behind Lagrange multipliers is that the gradient vector
of g and the gradient of the constraint x2

1 + x2
2 − 1 should be parallel at a constrained optimum. Since two

vectors ~a and ~b are parallel if and only if ~a = λ~b for some λ, and since the gradient of the constraint is simply
(2x1, 2x2)

T = 2~x, this means that a local optimum should satisfy ∇g(~x) = 2λ~x. This looks similar to the
eigenvector equation A~x = λ~x; in this problem we’ll make the connection clearer.

a) The Lagrange multiplier approach says that we should define the Lagrangian:

L(x1, x2, λ) = g(~x)− λ(x2
1 + x2

2 − 1)

3

We then solve the system of three equations in three unknowns:
∂L
∂x1

= 0

∂L
∂x2

= 0

∂L
∂λ

= 0

Write out and solve this system for x1, x2, and λ.

Hint: Try to get a formula for x2
1 in terms of λ only, and same for x2

2. When you get to this point, you
will be able to substitute your formulas for x2

1 and x2
2 into ∂L/∂λ = 0 to get a function of the form

a1
(b1λ+ c1)2 + d1

+
a2

(b2λ+ c2)2 + d2
− 1 = 0,

where the a, b, c, d’s are all constants. We want to solve this for λ, which is not easy to do analytically.
Instead, solve it numerically using scipy.optimize.fsolve, or similar. Once you’ve solved for λ, you
can plug it back in to your equations for x2

1 and x2
2.

Solution: The partial derivatives are:

∂L
∂x1

= 8x1 + 10x2 − 2λx1

∂L
∂x2

= 6x2 + 10x1 − 2λx2

∂L
∂λ

= x2
1 + x2

2 − 1

Setting the last equations to zero and solving for (alternately) x1 and x2 yields:

x1 =
√
1− x2

2

x2 =
√
1− x2

1

We can plug these into the first two equations to reduce the number of variables in each. For
instance, the first equation becomes:

8x1 + 10x2 − 2λx1 = 0

=⇒ (8− 2λ)x1 + 10
√

1− x2
1 = 0

=⇒ 10
√

1− x2
1 = (2λ− 8)x1

Squaring both sides:

=⇒ 100(1− x2
1) = (2λ− 8)2x2

1

=⇒ 100− 100x2
1 = (2λ− 8)2x2

1

=⇒ 100 =
[
(2λ− 8)2 + 100

]
x2
1

=⇒ x2
1 = 100/

[
(2λ− 8)2 + 100

]

4

Similarly for x2, we have:

6x2 + 10x1 − 2λx2 = 0

=⇒ (6− 2λ)x2 + 10
√

1− x2
2 = 0

=⇒ 10
√

1− x2
2 = (2λ− 6)x2

Squaring both sides:

=⇒ 100(1− x2
2) = (2λ− 6)2x2

2

=⇒ 100− 100x2
2 = (2λ− 6)2x2

2

=⇒ 100 =
[
(2λ− 6)2 + 100

]
x2
2

=⇒ x2
2 = 100/

[
(2λ− 6)2 + 100

]

Plugging these back into the formula for ∂L/∂λ = 0, we get:

∂L/∂λ = 0

=⇒ x2
1 + x2

2 − 1 = 0

=⇒ 100

(2λ− 8)2 + 100
+

100

(2λ− 6)2 + 100
− 1 = 0

Solving this by hand is not possible. Instead, we can solve it numerically using a solver, such
as scipy.optimize.fsolve. We also plot the function so that we can get a sense for where its
roots are:

import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize

def f(x):
return (

100 / ((2*x - 8)**2 + 100)
+
100 / ((2*x - 6)**2 + 100)
-
1

)

x = np.linspace(-5, 10, 100)
plt.plot(x, f(x))
plt.axhline(0, color='black', linestyle='--')
plt.show()

print(scipy.optimize.fsolve(f, -2))
print(scipy.optimize.fsolve(f, 9))

Now, there are multiple roots of the function, as the plot shows:

5

4 2 0 2 4 6 8 10

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

We guess that they are around -2 and 8. Using these as the starting location in scipy.optimize.fsolve,
we get two approximated roots: -1.525 and 8.525.

We plug these back into our formulas for x2
1 and x2

2:

x2
1 = 100/

[
(2λ− 8)2 + 100

]
=

x2
2 = 100/

[
(2λ− 6)2 + 100

]
=

With λ = −1.525, we get:

x1 = ±0.671

x2 = ±0.741

With λ = 8.525, we get:

x1 = ±0.741

x2 = ±0.671

This seems to yield 8 possible combinations of x1, x2, λ, but not all combinations actually solve
the original system of equations. For example, x1 = .67, x2 = .74, and λ = −1.525 does not
satisfy ∂L/∂x1 = 0. Filtering out the four non-solutions, we have:

x1 x2 λ g(x1, x2)

0.67 -0.74 -1.525 -1.52
-0.67 0.74 -1.525 -1.52
0.74 0.67 8.525 8.52
-0.74 -0.67 8.525 8.52

b) The equation g(~x) = 4x2
1 +3x2

2 +10x1x2 can be written in matrix-vector form as g(~x) = ~xTA~x for an
appropriately-defined matrix, A. Find this matrix A, and show that the matrix form is equivalent to

6

the original form.

You can assume that A is symmetric.

Solution: Define
A =

(
4 5
5 3

)
We have:

A~x =

(
4 5
5 3

)(
x1

x2

)
=

(
4x1 + 5x2

5x1 + 3x2

)

So:

~xTA~x =
(
x1 x2

)(4x1 + 5x2

5x1 + 3x2

)
= 4x2

1 + 5x1x2 + 5x1x2 + 3x2
2

= 4x2
1 + 10x1x2 + 3x2

2

c) Using whatever method you choose (e.g., numpy), compute the eigenvectors and eigenvalues of A.
Show that the eigenvectors are the same as your solution to part (a).

Solution:

>>> import numpy as np
>>> A = np.array([[4, 5], [5, 3]])
>>> evals, evecs = np.linalg.eigh(A)
>>> print(evals)
[-1.52493781 8.52493781]
>>> print(evecs)
[[0.67100532 -0.74145253]
[-0.74145253 -0.67100532]]

The columns of the evecs array are the two eigenvectors of A. We have two solutions: û(1) =
(0.671,−0.741)T and û(2) = (−0.741,−0.671)T . These are the same as the solutions to the first
part. Note that in the first part, we also have (−0.671, 0.741)T and (0.741, 0.671)T , but these are
just −û(1) and −û(2), and are therefore not really “different” solutions.

d) We saw in lecture that a matrix can be interpreted as the representation of a linear transformation
~f(~x). It turns out that A represents the gradient of ~g.

Show that A represents the linear transformation ~f(~x) = 1
2∇g(~x), ∇g(~x) = (∂g/∂x1, where ∂g/∂x2)

T

is the gradient of g.

Solution: We have:

∂g

∂x1
= 8x1 + 6x2

∂g

∂x2
= 6x2 + 6x1

7

So the gradient vector is:

∇g(~x) =

(
8x1 + 10x2

10x2 + 6x1

)
and

~f(~x) =
1

2
∇g(~x) =

(
4x1 + 5x2

5x2 + 3x1

)
Whereas:

A~x =

(
4 5
5 3

)(
x1

x2

)
=

(
4x1 + 5x2

5x1 + 3x2

)
=

1

2
∇g(~x)

Therefore, for a function g of the form ax2
1 + bx2

2 + cx1x2, the gradient is a linear transformation that can
be computed by a matrix multiplication, and the method of Lagrange multipliers is equivalent to finding an
eigenvector of the matrix representing the gradient.

Problem 3.

The power method is a simple approach to computing an eigenvector of a matrix A. The method is as
follows:

1. Initialize ~x(0) arbitrarily (e.g., randomly).

2. Repeat until convergence:

(a) Set ~x(i+1) = (A~x(i))/‖A~x(i)‖.

Eventually, ~x(i) will be the top eigenvector of A.

In this problem, we’ll develop an intuition for why this works.

a) The algorithm described above normalizes at each step for numerical precision. This complicates the
analysis slightly. Instead, suppose for now that at every step we do not normalize; that is ~x(i+1) =
A~x(i). In other words, after k iterations, we’ll have ~x(k) = Ak~x(0). Only at the very end do we
normalize by dividing by Ak~x(0). That is, after k iterations we’ll return Ak~x(0)/‖Ak~x(0)‖.

Suppose that A is a d × d symmetric matrix. Let the eigendecomposition of ~x(0) in terms of A
be ~x(0) = a1û

(1) + . . . + adû
(d), where {û(1), . . . , û(d)} form an orthonormal basis of eigenvectors

of A. You may assume that Aû(i) = λiû
(i), where λi is the eigenvalue associated with û(i), that

|λ1| > |λ2| > |λ3| · · · , etc., and that a1 6= 0. For simplicity, you may assume that all of the eigenvalues
are positive, although this is actually not necessary for the proof.

Find a formula for ‖Ak~x(0)‖ that involves only a1, . . . , ad and the eigenvalues λ1, . . . , λd.

Solution:

Ak~x(0) = Ak(a1û
(1) + . . .+ adû

(d))

= a1A
ka1û

(1) + . . .+ adA
kû(d))

If û(i) is an eigenvector of A, then Aû(i) = λiû
(i), by definition. It follows that Akû(i) = λk

i û
(i):

= a1A
ka1û

(1) + . . .+ adA
kû(d)

= a1λ
k
1 û

(1) + . . .+ adλ
k
dû

(d)

8

Now, for any vector ~v, ‖~v‖ =
√
~v · ~v. So ‖Ak~x(0)‖2 = (Ak~x(0)) · (Ak~x(0)). We have:

‖Ak~x(0)‖2 = (a1λ
k
1 û

(1) + . . .+ adλ
k
dû

(d)) · (a1λk
1 û

(1) + . . .+ adλ
k
dû

(d))

Any term of the form û(i) · û(j) with will be zero when i 6= j because û(i) and û(j) are orthogonal,
or one when i = j. And so we are left with only the terms where i = j. That is:

= a21λ
2k
1 + . . .+ a2dλ

2k
d

Therefore ‖Ak~x(0)‖ =
√
a21λ

2k
1 + . . .+ a2dλ

2k
d

b) Show that

lim
k→∞

Ak~x(0)

‖Ak~x(0)‖
= û(1).

That is, the result is the top eigenvector of A (the eigenvector whose eigenvalue is largest in absolute
value).

Note: a proof by calculation is needed to earn full credit, but an informal argument with some
calculation will earn almost all of the credit.

Solution: We have:

lim
k→∞

Ak~x(0)

‖Ak~x(0)‖
= lim

k→∞

a1λ
k
1 û

(1) + . . .+ adλ
k
dû

(d)√
a21λ

2k
1 + . . .+ a2dλ

2k
d

= lim
k→∞

 a1λ
k
1 û

(1)√
a21λ

2k
1 + . . .+ a2dλ

2k
d

+ . . .+
adλ

k
1 û

(d)√
a21λ

2k
1 + . . .+ a2dλ

2k
d

= lim

k→∞

a1λ
k
1 û

(1)√
a21λ

2k
1 + . . .+ a2dλ

2k
d

+ . . .+ lim
k→∞

adλ
k
dû

(d)√
a21λ

2k
1 + . . .+ a2dλ

2k
d

Consider the jth term, which looks like:

lim
k→∞

ajλ
k
j û

(j)√
a21λ

2k
1 + a22λ

2k
2 . . .+ a2dλ

2k
d

We can show that this is zero if j 6= 1 and û(1) if j = 1. The intution is that, when k is large,
the denominator will look like |a1λk

1 |, since |λ1| is the largest out of all the eigenvalues. Then the
limit will look like |λj/λ1|k, and since |λj/λ1| < 1, this will be zero.

9

Let’s try it. Factoring out an a21λ
(2k)
1 from every term in the denominator:

lim
k→∞

ajλ
k
j û

(j)√
a21λ

2k
1 + a22λ

2k
2 . . .+ a2dλ

2k
d

= lim
k→∞

ajλ
k
j û

(j)√
a21λ

2k
1

(
1 +

a2
2λ

2k
2

a2
1λ

2k
1

+ . . .+
a2
dλ

2k
d

a2
1λ

2k
1

)
= lim

k→∞

ajλ
k
j û

(j)

|a1λk
1 |
√
1 +

a2
2λ

2k
2

a2
1λ

2k
1

+ . . .+
a2
dλ

2k
d

a2
1λ

2k
1

=
limk→∞(ajλ

k
j û

(j))/|a1λk
1 |

limk→∞

√
1 +

a2
2λ

2k
2

a2
1λ

2k
1

+ . . .+
a2
dλ

2k
d

a2
1λ

2k
1

The limit in the denominator will be one, so we’re left with:

= lim
k→∞

(ajλ
k
j û

(j))/|a1λk
1 |

= lim
k→∞

ajλ
k
j û

(j)

|a1λk
1 |

If j = 1, then ajλ
k
j /|a1λ1| = 1, and the limit will simply be û(1). But if j 6= 1, then |λj/λ1| < 1,

and so the limit of |λj/λ1|k will be zero.

c) Let A be the matrix 3 7 2
7 9 −3
2 −3 1

 .

Implement the power method (the original version, which normalizes at each step) in code, and use it
to compute the top eigenvector of A. Attach your code here.

Solution:

import numpy as np

A = np.array([
[3, 7, 2],
[7, 9, -3],
[2, -3, 1]

])

def power_method(A, x0, threshold=1e-5):
eps = float('inf')
x0 = x0 / np.linalg.norm(x0)
while eps > threshold:

x = A @ x0
x = x / np.linalg.norm(x)
eps = np.linalg.norm(x - x0)
x0 = x

return x0

10

evals, evecs = np.linalg.eigh(A)

print(power_method(A, np.array([1, 1, 1])))
print(evecs)

The eigenvector it outputs is (0.52582284, 0.84271066,−0.11553823)T .

d) Using another method (e.g., numpy.linalg.eigh), compute the top eigenvector of A and verify that
your implementation of the power method agrees.

Solution: Using np.linalg.eigh, we get the following eigenvectors: û(1) = (0.66,−.49,−.57)T ,
û(2) = (0.53,−.22,−.84)T , û(3) = (−0.56, .81, .q11)T ,

The power method found the third of these, which is the one with the largest eigenvalue (in
absolute value).

11

