
DSC 190 - Homework 05
Due: Wednesday, May 10

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

In lecture, we saw that one minimizer of the cost function

Cost(~f) =
∑
i

∑
j

wij(fi − fj)
2

is the vector ~f = 1√
n
(1, 1, . . . , 1)T which embeds all of the nodes of the graph to exactly the same number.

The cost of this trivial embedding is zero, and we typically ignore it in favor of the eigenvector of the graph
Laplacian with the next smallest positive eigenvalue for the embedding.

In the case where the graph has multiple connected components, however, there may be additional embed-
dings which have a cost of zero. For example, consider the similarity graph G shown below:

1

2 3

4

5

0.2

0.6

0.8
0.4

The weight of each edge is shown; the weight of non-existing edges is zero.

Find a normalized embedding vector ~g for the above graph such that Cost(~g) = 0 and ~g ⊥ 1√
n
(1, 1, . . . , 1)T ;

that is, ~g is orthogonal to the vector of all ones.

Solution:

For a connected graph, we can achieve a cost of zero by embedding each node to the exact same place.
For a disconnected graph, we can achieve a cost of zero by embedding all nodes in the same connected
component to the same place.

Let ~g = (g1, g2, g3, g4, g5)
T . In this case, we have a connected component of three nodes and another of

two nodes. We can embed each of the three nodes in the first component to the same number, a, and
the two nodes of the second component to the same number, b. That is: ~g = (a, a, a, b, b)T .

There are two constraints: ~g is orthogonal to the vector of all ones, and ‖~g‖ = 1. The latter tells us
that 3a2 + 2b2 = 1, and the former tells us that ~g · (1, 1, 1, 1, 1)T = 3a + 2b = 0. Solving for b, we find
b = −3a/2. Substituting into the first equation:

1 = 3a2 + 2b2 =⇒ 1 = 3a2 + 18a2/4 =⇒ 30a2/4 = 1 =⇒ a =
√
2/15

And therefore
b = −3a/2 = −3

2

√
2/15 = −

√
18/60 = −

√
3/10

1

So

~g =

√
2/15√
2/15√
2/15

−
√
3/10

−
√
3/10

Checking that this is orthogonal to the vector of all ones:

3a+ 2b = 3
√
2/15− 2

√
3/10 =

√
18/15−

√
12/10 =

√
6/5−

√
6/5 = 0.

Checking that this is normalized:

3a2 + 2b2 = 3× (2/15) + 2× (3/10) = 6/15 + 6/10 = 2/5 + 3/5 = 1

Problem 2.

The data at the link below contains information on 40 colleges in the US:

https://f000.backblazeb2.com/file/jeldridge-data/006-colleges/colleges-sample.csv

The data contains 17 numerical features measuring the size of the student body of each college, the graduation
rate, etc., and one Boolean feature (“Private”) saying whether the school is private or public. If we consider
only the numerical features, each college is a point in R17.

Using Laplacian Eigenmaps, embed each college as a point in two dimensions and plot the result to obtain
a similar figure to that shown below. You should construct a symmetric similarity matrix by building a
k-neighbors graph (you will need to choose k). You should also consider whether the data needs to be
standardized. You should drop the “Private” column for the purpose of computing the embedding – use only
the numerical data.

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

0.3

University of Virginia

University of South Carolina at Columbia

Univ. of Wisconsin at OshKosh

University of Nebraska at Lincoln

University of Pennsylvania

University of Oklahoma

Iowa State University

Central Missouri State University

University of Missouri at Columbia

Northeast Missouri State University

University of Hartford

Murray State University

Kansas State University

Marquette University

George Washington University

Brewton-Parker College
University of Hawaii at Manoa

Michigan State University

East Tennessee State University
University of Vermont

University of Notre Dame

Washington State University
University of New Hampshire

Fort Lewis College

Michigan Technological University

Indiana University at Bloomington

University of Delaware

College of William and Mary

Central Washington University

Purdue University at West Lafayette

George Mason University

College of Charleston
California Polytechnic-San Luis

Northeastern University

University of Louisville

University of Maryland at College Park

University of Rhode Island

Villanova University

Hofstra University

University of Oregon

Public
Private

Like the plot above, each point in your plot should be annotated with the name of the college, and the color

2

https://f000.backblazeb2.com/file/jeldridge-data/006-colleges/colleges-sample.csv

of the point should show whether the college is public or private. However, your plot may look significantly
different from the plot above due to the sign of the eigenvectors your code finds (it is arbitrary), as well as
your choice of k in constructing the k-neighbors graph, etc. We will look to see if it shows the same general
patterns as the plot above. For example, notice how there is a group of large midwestern state schools
(including “Michigan State University”, etc.), another group of large private universities (including “Notre
Dame”), etc. Your plot should show the same.

You may use packages like sklearn to compute the k-neighbors graph, but not to do the actual embedding
itself (e.g., do not use anything from sklear.manifold). Hint: the output of some sklearn functions is a
sparse matrix; it is OK in this case to convert it to a dense numpy array. Also note that sklearn’s function
for building a k-neighbors graph returns a directed graph, not an undirected graph, and therefore produces
an asymmetric weight matrix. You will need to think about how to “symmetrize” it.

Solution:

import sklearn.neighbors
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

data = pd.read_csv("./colleges-sample.csv", index_col=0)

standardize the data
Z = (data - data.mean(axis=0)) / data.std(axis=0)

W = np.array(sklearn.neighbors.kneighbors_graph(Z, n_neighbors=10).todense())

the below line symmetrizes W. In the result, an entry (i,j) will be 1
if W_{ij} was one or W_{ij}.T = W_{ji} was one.
W = np.maximum(W, W.T)

D = np.diag(W.sum(axis=0))
L = D - W

evals, evecs = np.linalg.eigh(L_norm)
embedding = evecs[:, [1, 2]]

draw the plot
plt.figure(figsize=(15, 10))
plt.scatter(*embedding[private == "No"].T, label="Public")
plt.scatter(*embedding[private == "Yes"].T, label="Private")

for i, (x, y) in enumerate(embedding):
plt.annotate(data.index[i], (x, y))

plt.legend()

3

