DSC 190 - Homework 06
Due: Wednesday, May 17

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

Consider fitting a prediction function to the data shown below:
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The pattern in this data is not linear, but we can still fit it using a linear prediction function and an
appropriate choice of basis functions.

The data for this problem can be found at:
https://£000.backblazeb2.com/file/jeldridge-data/007-noisy_exponential/data.csv

a) For this and the next few subproblems, consider fitting a function of the form H;(z;w) = we®. Note
that this function has just one parameter to be learned: w.

Write a Python function that takes in one argument, w, and computes the average square loss (that
is, the mean squared error) of H; on the data set with respect to w. Use your function to compute

the average square loss of w = 0.2.

Hint: the correct output of your function when called on 0.2 is a number between 100 and 200.

Solution:

def expected_square_loss(w):
p = w * np.exp(x)
return np.mean((p - y)**2)

expected_square_loss(0.2)

The expected square loss at w = 0.2 is approximately 174.2.



https://f000.backblazeb2.com/file/jeldridge-data/007-noisy_exponential/data.csv

b)

The parameter w controls the value of we® when z is close to zero. In that sense, it is a scale parameter.
Different values of w will change the shape of Hy, and will incur different amounts of error.

For example, the plot below shows H; for a particular choice of w that happens to be too small; H;
is not a good fit to the data. The red lines show the residuals. Your Python function from the last
part computes the average squared length of these red lines.
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One way to find the optimal value of w (that is, the value resulting in the smallest average squared
residual) is to use a numerical optimizer, such as scipy.optimize.minimize.

Use scipy.optimize.minimize to find the value of w which minimizes the average square loss (mean
squared error).

Solution: We can find the optimimum by writing:

Ww_opt = scipy.optimize.minimize(expected_square_loss, .5).x

We find w* = 0.4949

Another way to find the optimal value of w is to map the data to “feature space” and to fit a

straight line in that space. In this case, we have a single basis function ¢(x) = e®. Therefore,

Hy(z) = we® = wo(x).

Plot the data in feature space; that is, create a “new” data set where each original point (z,y) becomes
(o(2), ).

Hint: you should see a linear trend.

Solution: We can plot the data in feature space with

plt.scatter(np.exp(x), y)

We will see:
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d) Perform linear least squares in feature space. That is, fit a straight line to the “new” data
((]5(1'(1))7 yl)a vy (¢(x(n))7 yn)
and report its slope, w.

Note that the discussion shows you how to perform least squares regression using np.linalg.lstsq.
In this case, do not augment the data, since we are fitting a model we” without a bias term.

Solution: We can perform least squares regression in feature space with the following code:

X = np.exp(x) [:,None]
np.linalg.lstsq(X, y) [0]

This gives the same value of w* as before: roughly 0.4949.

Note that np.linalg.lstsq expects its first argument to be a two-dimensional array, but our
data is just a one-dimensional array. The [:,None] part in the first line has the effect of adding
a dimension to the one dimensional array; that is, it turns the array [1, 2, 3] into the array

Cf11, [21, [311.

You should have found the same value of w in the last part as you did when using scipy.optimize.minimize.
When we perform least squares regression in feature space, we are finding the value of w which minimizes
the average squared residual between the “new” data set and a straight line with slope w. When we used
scipy.optimize.minimize, we were finding the value of w to minimize the average squared residual between
the original data and the curved line, we®. The fact is — these are the same optimization problem! Whether
you fit a straight line in feature space, or a curved line in original space, you will find the same optimal w.

This happened because the function Hj(xz) = we® is a linear function of the parameter, w. Now let’s try
the same experiment, but with a different prediction function, Hs(z) = e®*. This is also a function of one
parameter, but the parameter is now in the exponential. This is not a linear function of w.

e) As before, write a Python function that takes in one argument, w, and computes the average square
loss (that is, mean squared error) of Hs on the data set with respect to w. Use your function to
compute the average square loss of w = 0.5.

Hint: the correct output of your function when called on 0.5 is a number between 200 and 300.

Solution:

def expected_square_loss(w):



p = np.exp(w * x)
return np.mean((y - p)**2)

When called on w = 0.5, the function returns 286.3.

f) Using scipy.optimize.minimize, find the value of w which minimizes the mean squared error of Ho.

Solution: We get a solution of w* = 0.844 with the following code:

w_opt_direct = scipy.optimize.minimize(expected_square_loss, .5).x

g) The prediction function of the form H(z;w) = e** does not involve a feature map in the sense that
we’'ve seen in lecture. Because of that, we cannot map the data to feature space and fit a linear
predictor there. However, there is trick: we can “linearize” the data in another way. Note that if
y ~ e"? then Iny =~ Ine""* = wx.

Plot the “transformed” data set in which the point (z,y) becomes (z,1lny).

Hint: you should see a linear trend.

Solution: When we plot the data with plt.scatter(x, np.log(y)), we see:
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h) Fit a straight line to the “transformed” data set by minimizing mean squared error, and report the
slope of this line, w.

Solution: Using the code below, we find a slope of w = 0.81.

w_opt_transformed = np.linalg.lstsq(x[:, None], y_prime) [0]

i) You should observe that the w you found in the last step is slightly different than the w that was
found “directly” using scipy.optimize.minimize. Using your Python function that computes the
mean squared error of Hy, given a choice of w, calculate the mean squared error of both values of w.

Solution: For the “direct” solution, we find an expected square loss of 15.122. For the solution
obtained through least squares on the “linearized” data, we get 20.613.



This is to be expected, since the “direct” solution was directly minimizing the mean squared error
— assuming that the numerical optimizer did it’s job and found the solution, there’s no choice of
w that can get smaller mean squared error than 15.122.

You should have found that the w found by “linearizing” the data has a larger mean squared error — it
doesn’t “fit” the data quite as well as the true minimizer. That is, linearizing the data and performing least
squares does not minimize the mean squared error of Hy. This is because Hs is not a linear function of the
parameter w.

This isn’t to say that it is a bad way of fitting the model. The plot below shows H, with both choices
of w: the “optimal” choice found by the numerical solver, and the choice found by least squares on the
“transformed” data. They are not too different!

70 A
—— Transformed °

60 Optimal

50 1

40 1

H(x)

30 1

20 1




