
DSC 190 - Homework 07
Due: Wednesday, May 24

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

In lecture it was said that a neural network with linear activation functions is a linear prediction function,
meaning that its decision boundary will also be linear. If we wish to have a non-linear decision boundary,
we must introduce non-linearities with, for instance, non-linear activation functions.

In this problem, we’ll see concretely that a neural network with linear activations is again linear.

Consider the neural network shown below.
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The inputs x1, x2, and x3 are numbers. Each w
(k)
ij is a scalar weight. aij denotes the output of a neuron.

Remember that when linear activations are used, the output of a neuron is simply the weighted sum of its
inputs. So for instance:
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The node labeled 1 is the bias input. a2 is the output of the neural network overall.

a) Write the output of the network, a2, as an expression involving only the inputs x1, x2, x3 and the
weights, w(k)

ij . ai should not appear in your expression.

Solution: We have

a11 = w
(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 + w

(1)
01

a12 = w
(1)
12 x1 + w

(1)
22 x2 + w

(1)
32 x3 + w

(1)
02

Therefore:

1



a2 = w
(2)
11 a11 + w

(2)
21 a12 + w

(2)
01

= w
(2)
11

(
w

(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 + w

(1)
01

)
+ w

(2)
21

(
w

(1)
12 x1 + w

(1)
22 x2 + w

(1)
32 x3 + w

(1)
02

)
+ w

(2)
01

b) Show that the output of the network can be written

a2 = w0 + w1x1 + w2x2 + w3x3,

where w0, w1, w2, and w3 are scalars that depend only on the weights in the original network. By
showing this, you’re proving that the network above is equivalent to a much simpler linear model.

Solution: Starting from the result of the last subproblem:
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Grouping the terms involving x1, x2, and x3 separately:
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= w0 + w1x1 + w2x2 + w3x3

where
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Problem 2.

Consider the network below:
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Suppose

W (1) =

(
1 3
−2 2

)
~b(1) = (0, 0)T

and assume that the hidden layer uses the ReLU as its activation function.

As discussed in lecture, the first layer of this neural network can be viewed as mapping an input point in R2

to a new representation, also in R2.

Suppose ~x = (2, 1)T . What is the new representation of ~x produced by this network?

Solution: The new representation is (0, 8)T .

Problem 3.

Consider the neural network architecture shown below:
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In all parts of this problem, assume that the network’s parameters are:
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Note that this network is a function H : R → R, so we can easily plot it. In the parts below, you will plot
the network for a range of inputs. Your plots may not necessarily be interesting, but they will give you a
sense of how different choices of activation function affect the type of function the neural network computes.

Suggestion: create a Python function network(x, activation) which takes in two things: a number x and
an activation function, and computes the output of the network on x using that activation function (that
is, it computes H(x)). You can then use that code for all parts of this problem.

a) Assume that all activation functions are linear. Plot H(x) in the range x ∈ [−3, 3]. Show your code.

Solution:
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This was generated by the following code, which was also used to generate the images in the
other subproblems.

"""This code isn't the most *efficient* way to implement a neural
network, but it is maybe the simplest."""

import numpy as np
import matplotlib.pyplot as plot

def linear(x):
return x

def sigmoid(x):
return 1/(1 + np.exp(x))

def relu(x):
return np.maximum(0, x)

def network(x, activation=linear):
x = np.array([x])

W_1 = np.array([-3, -5, 4])[:,None]
b_1 = np.array([3, 2, -1])

W_2 = np.array([
[2, -3],
[-5, 5],
[-3, 0]

])
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b_2 = np.array([1, 2])

W_3 = np.array([5, -4])
b_3 = np.array([-3])

def H_1(z):
return activation(W_1 @ z + b_1)

def H_2(z):
return activation(W_2.T @ z + b_2)

def H_3(z):
# output node uses linear activation
return W_3 @ z + b_3

return H_3(H_2(H_1(x)))[0]

def H_linear(x):
return network(x, activation=linear)

def H_relu(x):
return network(x, activation=relu)

def H_sigmoid(x):
return network(x, activation=sigmoid)

def plot(H):
xx = np.linspace(-3, 3, 100)
yy = [H(x) for x in xx]
plt.plot(xx, yy)

plt.xlabel('$x$')
plt.ylabel('$H(x)$')

b) Assume that all hidden nodes have sigmoid activation and that the output node has linear activation.
Plot H(x) in the range x ∈ [−3, 3]. Show your code.

Solution:
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c) Assume that all hidden nodes have ReLU activation and that the output node has linear activation.
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Plot H(x) in the range x ∈ [−3, 3]. Show your code.

Solution:
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