DSC 140B Representation Learning

Lecture 01 | Part 1

Introduction

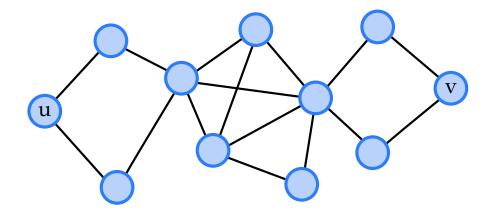
Welcome to DSC 140B

Representation Learning

What is Machine Learning?

- Computers can do things very quickly.
- ▶ But must be given really specific instructions.
- **Problem**: Not all tasks are easy to dictate.

Example (Easy)

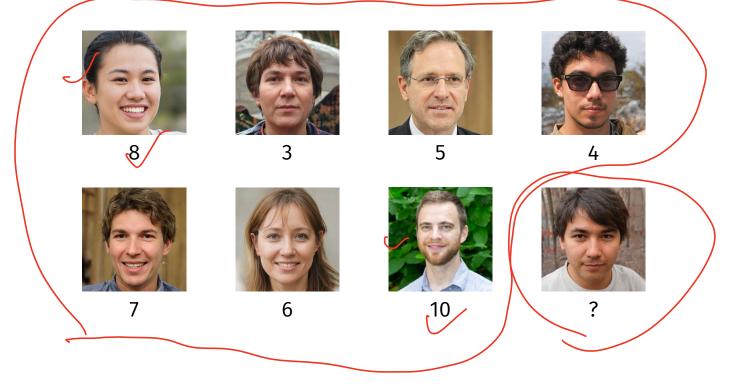


Problem: Find a shortest path between *u* and *v*.

Example (Not so easy)

Problem: On a scale from 1-10, how happy is this person?

The Trick: Use Data



What is Machine Learning?

Before: Computer is told how to do a task.

Instead: learn how to do a task using data.

What is Machine Learning?

- Before: Computer is told how to do a task.
- Instead: learn how to do a task using data.
- ▶ We still have to **tell** the computer how to learn.

An **ML algorithm** is a set of precise instructions telling the computer **how to learn** from data.

An **ML algorithm** is a set of precise instructions telling the computer **how to learn** from data.

Spoiler: the algorithms are usually pretty simple. It's the **data** that does the real work.

An **ML algorithm** is a set of precise instructions telling the computer **how to learn** from data.

Spoiler: the algorithms are usually pretty simple. It's the **data** that does the real work.

This is because real world data has "**structure**".

Problem: On a scale from 1-10, how happy is this person?

Recall: Least Squares Regression

Example: predict the price of a laptop.

Choose some features:

CPU speed, amount of RAM, weight (kg).

Prediction function (weighted "vote"):
(price) = $w_0 + w_1 \times (cpu) + w_2 \times (ram) + w_3 \times (weight)$

Learn w_i by minimizing squared error.

Representations

- Computers don't understand the concept of a laptop.
 A: (5, 2, 4)
- ▶ We had to **represent** a laptop as a set of features.
 - CPU speed, amount of RAM, weight (kg).
- Clearly, choosing right feature representation is important.

Now: Predict Happiness

- Given an image, predict happiness on a 1-10 scale.
- This is a regression problem.
- Can we use least squares regression?

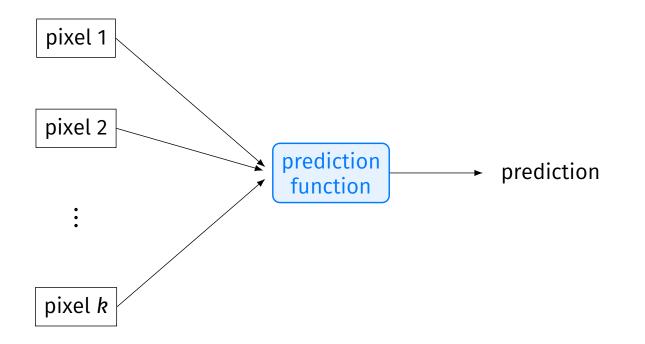
Problem

- Computers don't understand images.
- ► How do we **represent** them?
- Simple approach: a bag of pixels.
 - **Each** pixel has an numerical **intensity**.
 - Each pixel is a feature.
 - In this way, an image is represented as a vector in some high dimensional space.

Least Squares for Happiness

(happiness) =
$$w_0$$

+ w_1 * (pixel 1)
+ w_2 * (pixel 2)
+ ...
+ w_k * (pixel k)
+ $2 \pm 6 \times 2 \pm 6 \times 2 \pm 4 \times 2 \pm 5 \times 2 \pm$



Exercise

Say we train a least squares regression model on a set of images to predict happiness. We achieve a mean squared error of M_1 .

Now we scramble every image's pixels in exactly the same way (same transformation of each image). We retrain, and achieve MSE of M_2 .

Which is true:

Answer

- The regression model will work just as well if the images are all scrambled in exactly the same way.
- This is because the model doesn't use the **proximity** of pixels.
- The representation (each pixel is a feature) does not capture this.

Exercise

Say we train a least squares regression model on a set of images to predict happiness. We achieve a mean squared error of M_1 .

Now we scramble every image's pixels independently. We retrain, and achieve MSE of M_2 .

Which is likely to be true:? $M_1 < M_2$

Happiness: it's in the Pixels

The information is contained in the image... but not in individual pixels.

In patterns of pixels: The shape of the eyebrows.

- Angle of the corners of the mouth.
- Are teeth visible?

in tuiking

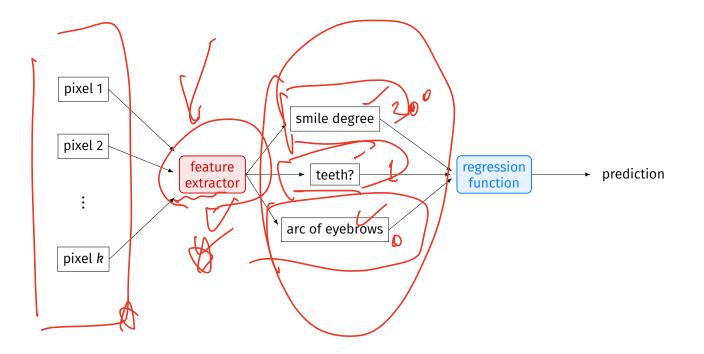
The representation is too simple – probably won't work well¹.

¹On this example! Works OK on, e.g. MNIST

Handcrafted Representations

- Idea: build a feature extractor to detect:

 - The shape of the eyebrows.Angle of the corners of the mouth.
 - Are teeth visible?
- Use these as high-level features instead.

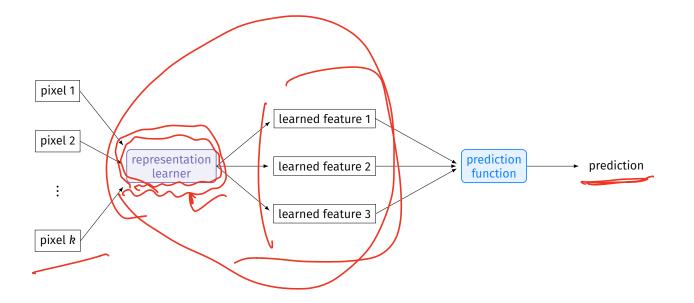


Problem

Extractors (may) make good **representations**.

But building a feature extractor is hard.

Can we learn a good representation?



DSC 140B

- We'll see how to learn good representations.
- Good representations help us when:
 - 1. making predictions;
 - 2. doing EDA (better visualizations).

Claim

Many of the famous recent advancements in AI/ML are due to representation learning.

Representations and Structure

- Real world data has structure.
- But "seeing" the structure requires the right representation.

Example: Pose Estimation

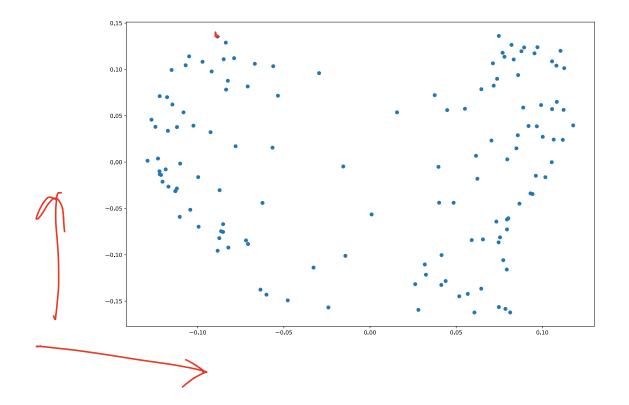
Problem: Classify, is person looking left, right, up, down, netural?

Example: Pose Estimation

600 2100

As a "bag of pixels" each image is a vector in $\mathbb{R}^{10,000}$.

Later: we'll see how to reduce dimensionality while preserving "closeness".



Main Idea

By learning a better representation, the classification problem can become easy; sometimes trivial.

Example: word2vec

How do we represent a word?

- Google's word2vec learned a representation of words as points in 300 dimensional space.

Example: word2vec

Fun fact: we can now add and subtract words.
 They're represented as vectors.

Surprising results:

V_{Paris} - V_{France} + V_{China} ≈ V_{Beijing} Cypity Courry Gon App 2

Example: word2vec²-

Table 8: *Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-gram model trained on 783M words with 300 dimensionality).*

	Relationship	Example 1	Example 2	Example 3
	France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
V	big - bigger	small: larger	cold: colder	quick: quicker
	Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
	Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
	Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
	copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
	Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
	Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
	Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
	Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

²"Efficient Estimation of Word Representations in Vector Space" by Mikolov, et al.

Example: Neural Networks

- word2vec is an example of a neural network model.
- Deep neural networks have been very successful on certain tasks.
- ► They **learn** a good representation.

Main Idea

Building a good model requires picking a good **feature representation**.

We can pick features by hand.

Or we can **learn** a good feature representation from data.

DSC 140B is about learning these representations.

Roadmap

- ► Dimensionality Reduction P ⊂ A
- Manifold learning
- Neural Networks
- Autoencoders
 - Deep Learning

Practice vs. Theory

- Goal of this class: understand the fundamentals of representation learning.
- Both practical and theoretical.
- Think: more DSC 40A than DSC 80, but a bit of both.

Tools of the Trade

- We'll see some of the popular Python tools for feature learning.
 - numpy
 - 🕨 keras
 - ▶ sklearn
 - •

DSC 140B Representation Learning

Lecture 01 | Part 2

Syllabus

dsc140b.com

Note

► No discussion this week!