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Why Linear Algebra?
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Dimensionality Reduction

▶ This is an example of dimensionality reduction:
▶ Input: vectors in ℝ10,000.
▶ Output: vectors in ℝ2.

▶ The method which produced this result is called
Laplacian Eigenmaps.

▶ How does it work?



A Preview of Laplacian Eigenmaps

To reduce dimensionality from 𝑑 to 𝑑′:

1. Create an undirected similarity graph 𝐺
▶ Each vector in ℝ𝑑 becomes a node in the graph.
▶ Make edge (𝑢, 𝑣) if 𝑢 and 𝑣 are “close”

2. Form the graph Laplacian matrix, 𝐿:
▶ Let 𝐴 be the adjacency matrix, 𝐷 be the degree matrix.
▶ Define the graph Laplacian matrix, 𝐿 = 𝐷 − 𝐴.

3. Compute 𝑑′ eigenvectors of 𝐿.
▶ Each eigenvector gives one new feature.



Why eigenvectors?

▶ We will cover Laplacian Eigenmaps in much
greater detail.

▶ For now: why do eigenvectors appear here?
▶ What are eigenvectors?
▶ How are they useful?
▶ Why is linear algebra important in ML?
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Coordinate Vectors



Coordinate Vectors

▶ We can write a vector ⃗𝑥 ∈ ℝ𝑑 as a coordinate
vector:

⃗𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑑

)



Example

⃗𝑥 = ( 2−3)

⃗𝑦 = (02)



Standard Basis
▶ Writing a vector in coordinate form requires
choosing a basis.

▶ The “default” is the standard basis: ̂𝑒(1), … , ̂𝑒(𝑑).



Standard Basis

▶ When we write ⃗𝑥 = (𝑥1, … , 𝑥𝑑)𝑇, we mean that
⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + …𝑥𝑑 ̂𝑒(𝑑).

Example: ⃗𝑥 = (3, −2)𝑇



Standard Basis Coordinates

▶ In coordinate form:

̂𝑒(𝑖) =
⎛⎜⎜⎜⎜

⎝

0
0
⋮
1
⋮
0
0

⎞⎟⎟⎟⎟

⎠

where the 1 appears in the 𝑖th place.



Exercise

Let ⃗𝑥 = (3, 7, 2, −5)𝑇. What is ⃗𝑥 ⋅ ̂𝑒(4)?



Recall: the Dot Product

▶ The dot product of 𝑢⃗ and ⃗𝑣 is defined as:

𝑢⃗ ⋅ ⃗𝑣 = ‖𝑢⃗‖‖ ⃗𝑣‖ cos 𝜃

where 𝜃 is the angle between 𝑢⃗ and ⃗𝑣.

▶ 𝑢⃗ ⋅ ⃗𝑣 = 0 if and only if 𝑢⃗ and ⃗𝑣 are orthogonal



Dot Product (Coordinate Form)

▶ In terms of coordinate vectors:

𝑢⃗ ⋅ ⃗𝑣 = 𝑢⃗𝑇 ⃗𝑣

= (𝑢1 𝑢2 ⋯ 𝑢𝑑) (

𝑣1
𝑣2
⋯
𝑣𝑑

)

=

▶ This definition assumes the standard basis.



Example

(

3
7
2
−5

) ⋅ (

0
0
0
1

) =



What does ChatGPT say?



Other Bases

▶ The standard basis is not the only basis.

▶ Sometimes more convenient to use another.



Example



Orthonormal Bases

▶ Orthonormal bases are particularly nice.

▶ A set of vectors 𝑢̂(1), … , 𝑢̂(𝑑) forms an orthonomal
basis U for 𝑅𝑑 if:
▶ They are mutually orthogonal: 𝑢̂(𝑖) ⋅ 𝑢̂(𝑗) = 0.
▶ They are all unit vectors: ‖𝑢̂(𝑖)‖ = 1.



Example

𝑢̂(1) = 1
√2

(11) 𝑢̂(2) = 1
√2

(−11 )



Coordinate Vectors

▶ A vector’s coordinates depend on the basis used.

▶ If we are using the basis U = {𝑢̂(1), 𝑢̂(2)}, then
⃗𝑥 = (𝑥1, 𝑥2)𝑇 means ⃗𝑥 = 𝑥1𝑢̂(1) + 𝑥2𝑢̂(2).

▶ We will write [ ⃗𝑥]U = (𝑥1, … , 𝑥𝑑)𝑇 to denote that the
coordinates are with respect to the basis U .



Exercise

Let 𝑢̂(1) = 1
√2
(1, 1)𝑇 and 𝑢̂(2) = 1

√2
(−1, 1)𝑇. Suppose

[ ⃗𝑥]U = (3, −4)𝑇. What is ⃗𝑥 ⋅ 𝑢̂(1)?



What did ChatGPT say?



Exercise

Consider ⃗𝑥 = (2, 2)𝑇 and let 𝑢̂(1) = 1
√2
(1, 1)𝑇 and 𝑢̂(2) =

1
√2
(−1, 1)𝑇. What is [ ⃗𝑥]U?



Change of Basis

▶ How do we compute the coordinates of a vector
in a new basis, U?

▶ Some trigonometry is involved.

▶ Key Fact: 𝑎⃗ ⋅ 𝑏⃗ = ‖𝑎⃗‖‖𝑏⃗‖ cos 𝜃



Change of Basis

(𝑎1, 𝑎2)

⃗𝑥

𝑎1

𝑎2

▶ Suppose we know
⃗𝑥 = (𝑎1, 𝑎2)𝑇 w.r.t. standard
basis.

▶ Then ⃗𝑥 = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2)



Change of Basis

(𝑎1, 𝑎2)

⃗𝑥

𝑢̂(1)
𝑢̂(2)

𝑏1

𝑏2

𝜃1
𝜃2

▶ Want to write:
⃗𝑥 = 𝑏1𝑢̂(1) + 𝑏2𝑢̂(2)

▶ Need to find 𝑏1 and 𝑏2.



Change of Basis

(𝑎1, 𝑎2)

⃗𝑥

𝑎1

𝑎2

𝑢̂(1)
𝑢̂(2)

𝑏1

𝑏2

𝜃1
𝜃2

▶ Exercise: Solve for 𝑏1,
writing the answer as a
dot product.

▶ Hint: cos 𝜃 =
adjacent/hypotenuse



Change of Basis

▶ Let U = {𝑢̂(1), … , 𝑢̂(𝑑)} be an orthonormal basis.

▶ The coordinates of ⃗𝑥 w.r.t. U are:

[ ⃗𝑥]U = (

⃗𝑥 ⋅ 𝑢̂(1)
⃗𝑥 ⋅ 𝑢̂(2)

⋮
⃗𝑥 ⋅ 𝑢̂(𝑑)

)



Exercise

Suppose ⃗𝑥 = (2, 1)𝑇 and let 𝑢̂(1) = 1
√2
(1, 1)𝑇 and 𝑢̂(2) =

1
√2
(−1, 1)𝑇. What is [ ⃗𝑥]U?



Exercise

Let ⃗𝑥 = (−1, 4)𝑇 and suppose:

𝑢̂(1) ⋅ ̂𝑒(1) = 3 𝑢̂(2) ⋅ ̂𝑒(1) = −1
𝑢̂(1) ⋅ ̂𝑒(2) = −2 𝑢̂(2) ⋅ ̂𝑒(2) = 5

What is [ ⃗𝑥]U?
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Functions of a Vector

▶ In ML, we often work with functions of a vector:
𝑓 ∶ ℝ𝑑 → ℝ𝑑′.

▶ Example: a prediction function, 𝐻( ⃗𝑥).

▶ Functions of a vector can return:
▶ a number: 𝑓 ∶ ℝ𝑑 → ℝ1

▶ a vector ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑′

▶ something else?



Transformations

▶ A transformation ⃗𝑓 is a function that takes in a
vector, and returns a vector of the same
dimensionality.

▶ That is, ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑.



Visualizing Transformations

▶ A transformation is a vector field.
▶ Assigns a vector to each point in space.
▶ Example: ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Example

▶ ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Linear Transformations

▶ Luckily, we often1 work with simpler, linear
transformations.

▶ A transformation 𝑓 is linear if:

⃗𝑓(𝛼 ⃗𝑥 + 𝛽 ⃗𝑦) = 𝛼 ⃗𝑓( ⃗𝑥) + 𝛽 ⃗𝑓( ⃗𝑦)

1Sometimes, just to make the math tractable!



Checking Linearity

▶ To check if a transformation is linear, use the
definition.

▶ Example: ⃗𝑓( ⃗𝑥) = (𝑥2, −𝑥1)𝑇



Exercise

Let ⃗𝑓( ⃗𝑥) = (𝑥1 + 3, 𝑥2). Is ⃗𝑓 a linear transformation?



Implications of Linearity

▶ Suppose ⃗𝑓 is a linear transformation. Then:

⃗𝑓( ⃗𝑥) = ⃗𝑓(𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2))
= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2))

▶ I.e., ⃗𝑓 is totally determined by what it does to the
basis vectors.



The Complexity of Arbitrary
Transformations

▶ Suppose 𝑓 is an arbitrary transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.

▶ What is ⃗𝑓( ⃗𝑥)?



The Simplicity of Linear
Transformations

▶ Suppose 𝑓 is a linear transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.

▶ What is ⃗𝑓( ⃗𝑥)?



Exercise

▶ Suppose 𝑓 is a linear transformation.
▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.
▶ I tell you ⃗𝑥 = (3, −4)𝑇.
▶ What is ⃗𝑓( ⃗𝑥)?



Key Fact

▶ Linear functions are determined entirely by what
they do on the basis vectors.

▶ I.e., to tell you what 𝑓 does, I only need to tell
you ⃗𝑓( ̂𝑒(1)) and ⃗𝑓( ̂𝑒(2)).

▶ This makes the math easy!





Example Linear Transformation

▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 3𝑥2, −3𝑥1 + 5𝑥2)𝑇



Another Example Linear
Transformation

▶ ⃗𝑓( ⃗𝑥) = (2𝑥1 − 𝑥2, −𝑥1 + 3𝑥2)𝑇



Note
▶ Because of linearity, along any given direction ⃗𝑓
changes only in scale.

⃗𝑓(𝜆𝑥̂) = 𝜆 ⃗𝑓(𝑥̂)





Linear Transformations and Bases

▶ We have been writing transformations in
coordinate form. For example:

⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇

▶ To do so, we assumed the standard basis.

▶ If we use a different basis, the formula for ⃗𝑓
changes.



Example

▶ Suppose that in the standard basis, ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇.
▶ Let 𝑢̂(1) = 1

√2
(1, 1)𝑇 and 𝑢̂(2) = 1

√2
(−1, 1)𝑇.

▶ Write [ ⃗𝑥]U = (𝑧1, 𝑧2)𝑇.
▶ What is [ ⃗𝑓( ⃗𝑥)]U in terms of 𝑧1 and 𝑧2?


