DST $140 B$ Representation Learning Lecture 03 Part 1
Functions of a Vector

Functions of a Vector

- In ML, we often work with functions of a vector:
$f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$.
- Example: a prediction function, $H(\vec{x})$.
- Functions of a vector can return:
\Rightarrow a number: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$
$>$ a vector $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- something else?

Transformations

A transformation \vec{f} is a function that takes in a vector, and returns a vector of the same dimensionality.

- That is, $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.
$C^{0.5}-0$ visualizing Transformations

$$
\vec{f}=\binom{1}{1}
$$

Example

$$
\vec{f}(\vec{x})=\left(3 x_{1}, x_{2}\right)^{T}
$$

$$
x^{\prime}=(1,0)
$$

Arbitrary Transformations

- Arbitrary transformations can be quite complex.

Arbitrary Transformations

- Arbitrary transformations can be quite complex.

Linear Transformations

- Luckily, we often ${ }^{1}$ work with simpler, linear transformations.

A transformation f is linear if:

$$
\vec{f}(\alpha \vec{x}+\beta \vec{y})=\alpha \vec{f}(\vec{x})+\beta \vec{f}(\vec{y})
$$

Checking Linearity
To check if a transformation is linear, use the definition.

$$
x=(0)
$$

$$
\Lambda=(0)
$$

Exercise
Let $\vec{f}(\vec{x})=\left(x_{1}+3, x_{2}\right)$. Is \vec{f} a linear transformation?

$$
f(\alpha x+\beta \gamma) \neq \alpha f(x)+\beta(x)
$$

$$
=\alpha \cdot\binom{3}{0}+\beta\binom{3}{0}
$$

Implications of Linearity

- Suppose \vec{f} is a linear transformation. Then:

$$
\begin{aligned}
\vec{f}(\vec{x}) & =\vec{f}\left(x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}\right) \\
& =x_{1} \vec{f} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)
\end{aligned}
$$

- I.e., \vec{f} is totally determined by what it does to the basis vectors.

The Complexity of Arbitrary Transformations

- Suppose f is an arbitrary transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{T}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{T}$.
- I tell you $\vec{x}=\left(x_{1}, x_{2}\right)^{\top}$.
- What is $\vec{f}(\vec{x})$?

The Simplicity of Linear Transformations

- Suppose f is a linear transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{T}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{T}$.
- I tell you $\vec{x}=\left(x_{1}, x_{2}\right)^{\top}$.
- What is $\vec{f}(\vec{x}) \stackrel{x_{1}}{ }$

Exercise

Key Fact

- Linear functions are determined entirely by what they do on the basis vectors.
- I.e., to tell you what f does, I only need to tell you $\vec{f}\left(\hat{e}^{(1)}\right)$ and $\vec{f}\left(\hat{e}^{(2)}\right)$.
- This makes the math easy!

Example Linear Transformation

$\vec{f}(\vec{x})=\left(x_{1}+3 x_{2},-3 x_{1}+5 x_{2}\right)^{T}$

Another Example Linear Transformation

$-\vec{f}(\vec{x})=\left(2 x_{1}-x_{2},-x_{1}+3 x_{2}\right)^{T}$

Note

- Because of linearity, along ony given direction \vec{f} changes only in scale.

Linear Transformations and Bases

- We have been writing transformations in coordinate form. For example:

$$
\vec{f}(\vec{x})=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{\top}
$$

- To do so, we assumed the standard basis.
- If we use a different basis, the formula for \vec{f} changes.

Example
Suppose that in the standard basis, $\vec{f}(\vec{x})=\left(\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{\top}\right.$.
Let $\hat{u}^{(1)}=\frac{1}{\sqrt{2}}(1,1)^{\top}$ and $\hat{u}^{(2)}=\frac{1}{\sqrt{2}}(-1,1)^{\top}$.
Write $[\vec{x}]_{\mathcal{U}}=\left(z_{1}, z_{2}\right)^{\top}$.
What is $[\vec{f}(\vec{x})]_{\mathcal{U}}$ in terms of z_{1} and z_{2} ?

DST $140 B$
Representation Learning Lecture $03 \mid$ Part
Matrices

Matrices?

- I thought this was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Recall: Linear Transformations

- A transformation $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation f is linear if

$$
\vec{f}(\alpha \vec{u}+\beta \vec{v})=\alpha \vec{f}(\vec{u})+\beta \vec{f}(\vec{v})
$$

Recall: Linear Transformations

- A key property: to compute $\vec{f}(\vec{x})$, we only need to know what f does to basis vectors.
- Example:

$$
\begin{aligned}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)} \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)} \\
\vec{f}(\vec{x}) & =
\end{aligned}
$$

Matrices

- f defined by what it does to basis vectors
- Place $\vec{f}\left(\hat{e}^{(1)}\right), \vec{f}\left(\hat{e}^{(2)}\right), \ldots$ into a table as columns
- This is the matrix representing ${ }^{2} f$

$$
\begin{align*}
& \vec{f}\left(\hat{e}^{(1)}\right)=-\hat{e}^{(1)}+3 \hat{e}^{(2)}=\binom{-1}{3} \tag{array}\\
& \vec{f}\left(\hat{e}^{(2)}\right)=2 \hat{e}^{(1)}=\binom{2}{0}
\end{align*}
$$

${ }^{2}$ with respect to the standard basis $\hat{e}^{(1)}, \hat{e}^{(2)}$

Example

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=(1,4,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(2)}\right)=(2,5,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(3)}\right)=(3,6,9)^{\top}
\end{aligned}
$$

Main Idea

A square ($n \times n$) matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What is matrix multiplication?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=(\quad)
$$

A low-level definition

$$
(A \vec{x})_{i}=\sum_{j=1}^{n} A_{i j} x_{j}
$$

A low-level interpretation

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=-2\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)+1\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+3\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)
$$

In general...

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{1} \vec{a}^{(1)}+x_{2} \vec{a}^{(2)}+x_{3} \vec{a}^{(3)}
$$

Matrix Multiplication

$$
\begin{aligned}
& \vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}+x_{3} \hat{e}^{(3)}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \\
& \vec{f}(\vec{x})=x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right) \\
& A=\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right) \\
& A \vec{x}=\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right)
\end{aligned}
$$

Matrix Multiplication

- Matrix A represents a linear transformation \vec{f}
$>$ With respect to the standard basis
- If we use a different basis, the matrix changes!
- Matrix multiplication $A \vec{x}$ evaluates $\vec{f}(\vec{x})$

What are they, really?

Matrices are sometimes just tables of numbers.

- But they often have a deeper meaning.

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What's more, if A represents \vec{f}, then $A \vec{x}=\vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f}.

Example

$$
\begin{array}{rlrl}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} & A= \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)} & & \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)} & A \vec{x}= \\
\vec{f}(\vec{x}) & = &
\end{array}
$$

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!

