DST $140 B$
Representation Learning Lecture 04 | Part
Matrices

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Recall: Linear Transformations

- A transformation $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation \vec{f} is linear if

$$
\vec{f}(\alpha \vec{u}+\beta \vec{v})=\alpha \vec{f}(\vec{u})+\beta \vec{f}(\vec{v})
$$

Recall: Linear Transformations
Key consequence of linearity: to compute $\vec{f}(\vec{x})$, only need to know what \vec{f} does to basis vectors.

$$
\begin{aligned}
& \text { Example: } \left.\begin{array}{rl}
\vec{f}(\vec{x}) & =f\left(\alpha \hat{e}^{(1)}+\beta e^{2}(2)\right) \\
\vec{x}=3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} \\
\vec{f}\left(\hat{e}^{(1)}\right)=-\hat{e}^{(1)}+3 \hat{e}^{(2)} \\
\vec{f}\left(\hat{e}^{(2)}\right)=2 \hat{e}^{(1)} \\
\vec{f}(\vec{x}) & =\vec{f}\left(3 e^{(1)}-4 \hat{e}^{(2)}\right)
\end{array}\right)=3 \vec{f}\left(e^{(1)}\right)-4 \hat{f}\left(\hat{e}^{(1)}\right) \\
&
\end{aligned}
$$

Matrices

- Idea: Since \vec{f} is defined by what it does to basis, place $\vec{f}\left(\hat{e}^{(1)}\right), \vec{f}\left(\hat{e}^{(2)}\right), \ldots$ into a table as columns
- This is the matrix representing ${ }^{1} \vec{f}$

$$
\left\{\begin{array}{l}
\vec{f}\left(\hat{e}^{(1)}\right)=-\hat{e}^{(1)}+3 \hat{e}^{(2)}=\binom{-1}{3} \\
\vec{f}\left(\hat{e}^{(2)}\right)=2 \hat{e}^{(1)}=\binom{2}{0}
\end{array}\right.
$$

${ }^{1}$ with respect to the standard basis $\hat{e}^{(1)}, \hat{e}^{(2)}$

Exercise

Write the matrix representing \vec{f} with respect to the standard basis, given:

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=(1,4,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(2)}\right)=(2,5,7)^{\top} \\
& \vec{f}\left(\hat{e}^{(3)}\right)=(3,6,9)^{\top}
\end{aligned}
$$

Exercise
Suppose \vec{f} has the matrix below:

Let $\vec{x}=(-2,1,3)^{T}$. What is $\vec{f}(\vec{x})$?
$=\left(f\left(\rho^{(b)}\right), f\left(f^{(k)}\right), \hat{f}\left(\rho^{(s)}\right)\right)$

$$
\vec{f}(\vec{v})=-2 \vec{f}\left(e^{(0)}\right)+\vec{f}\left(e^{(a)}\right)+3 \vec{f}\left(e^{(a)}\right)
$$

Main Idea

A square ($n \times n$) matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What is matrix multiplication?

$$
\begin{aligned}
& n \times m m_{\Delta} m \times q \quad n \times q
\end{aligned}
$$

A low-level definition

$$
\begin{aligned}
& \underset{n \times n}{A \cdot \vec{x}=\theta_{1}}={ }_{n \times 1} \\
& n \times n n \times n+\frac{(A \vec{x})_{i}=\sum_{i=1}^{n} A_{i j} x_{j}}{\sim} \\
& i=1 \cdots n \sum_{i=1}^{n} A_{1 j} \cdot X_{j}
\end{aligned}
$$

A low-level interpretation

In general...

Matrix Multiplication

$$
\vec{f}(\vec{x})=A \cdot \vec{x}
$$

$$
\begin{aligned}
& \vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}+x_{3} \hat{e}^{(3)}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \\
& \vec{f}(\vec{x})=x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right) \\
& n \times n \quad A=\left(\begin{array}{ccc}
\begin{array}{c}
\uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) \\
\downarrow
\end{array} & \left.\begin{array}{cc}
\uparrow \\
\vec{f}\left(\hat{e}^{(2)}\right) \\
\downarrow & \left.\begin{array}{c}
\uparrow \\
\vec{f} \\
\hat{e}^{(3)}
\end{array}\right) \\
\downarrow & \uparrow \\
\uparrow
\end{array}\right)
\end{array}\right. \\
& \underline{A \vec{x}}=\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right) \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)} \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right)
\end{aligned}
$$

Matrix Multiplication

- Matrix A represents a linear transformation \vec{f}
\checkmark With respect to the standard basis
- If we use a different basis, the matrix changes!
- Matrix multiplication $A \vec{x}$ evaluates $\vec{f}(\vec{x})$

What are they, really?

Matrices are sometimes just tables of numbers.

- But they often have a deeper meaning.

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What's more, if A represents \vec{f}, then $A \vec{x}=\vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f}.

Example

$$
\begin{aligned}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)} \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)} \\
\vec{f}(\vec{x}) & =
\end{aligned}
$$

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right) \\
A \vec{x} & =\left(\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right)\binom{3}{-4} \\
& =\binom{-11}{9}
\end{aligned}
$$

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!

Matrices in Other Bases

- The matrix of a linear transformation wrt the standard basis:

$$
\left(\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \cdots & \vec{f}\left(\hat{e}^{(d)}\right) \\
\downarrow & \downarrow & \downarrow &
\end{array}\right)
$$

- With respect to basis \mathcal{U} :

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
{\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{\underline{U}}} \\
\underset{\downarrow}{ } & \left.\begin{array}{cc}
\left.\vec{f}\left(\hat{u}^{(2)}\right)\right]_{\underline{U}} & \cdots \\
\downarrow & {\left[\vec{f}\left(\hat{u}^{(d)}\right)\right]_{\underline{u}}}
\end{array}\right)
\end{array}\right.
$$

Matrices in Other Bases $\quad\binom{1}{0} \rightarrow\binom{0}{1}$
Consider the transformation \vec{f} which "mirrors" ${ }^{(c)}\binom{0}{1} \Rightarrow\binom{1}{0}$ vector over the line of 45°.

- What is its matrix in the standard basis?

$$
\stackrel{H}{\sim}\left[\begin{array}{cc}
0 & 1 \\
i & 0
\end{array}\right]
$$

$$
\text { DST } 140 B
$$

Representation Learning Lecture $04 \mid$ Part 2
The Spectral Theorem

Eigenvectors

\Rightarrow Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$.

Eigenvectors (of Linear Transformations)

- Let \vec{f} be a linear transformation. An eigenvector of \vec{f} with eigenvalue λ is a nonzero vector \vec{v} such that $f(\vec{v})=\lambda \vec{v}$.

Geometric Interpretation

- When \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
- Possibly by a negative amount.

Symmetric Matrices

Recall: a matrix A is symmetric if $A^{T}=A$.

The Spectral Theorem ${ }^{2}$

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

What?

- What does the spectral theorem mean?

What is an eigenvector, really?

- Why are they useful?

Example Linear Transformation

$$
A=\left(\begin{array}{cc}
5 & 5 \\
-10 & 12
\end{array}\right)
$$

Example Linear Transformation

$$
A=\left(\begin{array}{cc}
-2 & -1 \\
-5 & 3
\end{array}\right)
$$

Example Symmetric Linear Transformation

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

Example Symmetric Linear Transformation

$$
A=\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

Observation \#1

- Symmetric linear transformations have axes of symmetry.

Observation \#2

The axes of symmetry are orthogonal to one another.

Observation \#3

The action of \vec{f} along an axis of symmetry is simply to scale its input.

Observation \#4

The size of this scaling can be different for each axis.

Main Idea

The eigenvectors of a symmetric linear transformation (matrix) are its axes of symmetry. The eigenvalues describe how much each axis of symmetry is scaled.

Exercise

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvector of the transformation.

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.1 \\
-0.1 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.2 \\
-0.2 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.3 \\
-0.3 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.4 \\
-0.4 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.5 \\
-0.5 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.6 \\
-0.6 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.7 \\
-0.7 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.8 \\
-0.8 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.9 \\
-0.9 & 2
\end{array}\right)
$$

The Spectral Theorem ${ }^{3}$

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

[^0]
What about total symmetry?

Every vector is an eigenvector.

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)
$$

Computing Eigenvectors


```
#> A = np.array([[2, -1], [-1, 3]])
"> np.linalg.eigh(A)
(array([1.38196601, 3.61803399]),
array([[-0.85065081, -0.52573111],
    [-0.52573111, 0.85065081]]))
```


[^0]: ${ }^{3}$ for symmetric matrices

