DSC 140B Representation Learning

Lecture 04 | Part 1

Matrices

Matrices?

I thought this week was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

 $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

Recall: Linear Transformations

- A **transformation** $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation \vec{f} is **linear** if

$$\vec{f}(\alpha \vec{u} + \beta \vec{v}) = \alpha \vec{f}(\vec{u}) + \beta \vec{f}(\vec{v})$$

Recall: Linear Transformations

• Key consequence of linearity: to compute $\vec{f}(\vec{x})$, only need to know what \vec{f} does to basis vectors. $(\alpha \hat{e}^{(1)} + \beta \hat{e}^{(2)}) = 2 \hat{f}$ Example $\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} =$ $\vec{e}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$ $\vec{e}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$ $f = 0 - 4 + 0 = -11 e^{-0} + 9 e^{-0}$

Matrices

- ▶ **Idea**: Since \vec{f} is defined by what it does to basis, place $\vec{f}(\hat{e}^{(1)}), \vec{f}(\hat{e}^{(2)}), \dots$ into a table as columns
- This is the **matrix** representing¹ \vec{f}

$$\begin{cases} \vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)} = \begin{pmatrix} -1\\ 3 \end{pmatrix} \\ \vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)} = \begin{pmatrix} 2\\ 0 \end{pmatrix} \end{cases}$$

Exercise

Write the matrix representing \vec{f} with respect to the standard basis, given:

$$\vec{f}(\hat{e}^{(1)}) = (1, 4, 7)^T$$

 $\vec{f}(\hat{e}^{(2)}) = (2, 5, 7)^T$
 $\vec{f}(\hat{e}^{(3)}) = (3, 6, 9)^T$

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f : \mathbb{R}^n \to \mathbb{R}^n$.

What is matrix multiplication?

A low-level definition

In general...

 $\begin{pmatrix} \uparrow \\ \vec{a}^{(1)} \\ \downarrow \end{pmatrix} \begin{pmatrix} \uparrow \\ \vec{a}^{(2)} \\ \downarrow \end{pmatrix} \begin{pmatrix} \uparrow \\ \vec{a}^{(3)} \\ \downarrow \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \vec{a}^{(1)} + x_2 \vec{a}^{(2)} + x_3 \vec{a}^{(3)}$

$$Matrix Multiplication
\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + x_3 \hat{e}^{(3)} = (x_1, x_2, x_3)^T$$

$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

Matrix Multiplication

Matrix A represents a linear transformation *f* With respect to the standard basis
 If we use a different basis, the matrix changes!

• Matrix multiplication $A\vec{x}$ evaluates $\vec{f}(\vec{x})$

AX = f(X)

What are they, *really*?

Matrices are sometimes just tables of numbers.

But they often have a deeper meaning.

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $\vec{f} : \mathbb{R}^n \to \mathbb{R}^n$.

What's more, if A represents \vec{f} , then $A\vec{x} = \vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f} .

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$
$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$
$$\vec{f}(\vec{x}) =$$

Example

$$A = \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix}$$

$$A\vec{x} = \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

Note

► All of this works because we assumed \vec{f} is **linear**.

• If it isn't, evaluating \vec{f} isn't so simple.

Note

• All of this works because we assumed \vec{f} is **linear**.

- If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!

Matrices in Other Bases

The matrix of a linear transformation wrt the standard basis:

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \cdots & \vec{f}(\hat{e}^{(d)}) \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

• With respect to basis \mathcal{U} :

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

Matrices in Other Bases

• Consider the transformation \vec{f} which "mirrors" a vector over the line of 45°.

DSC 140B Representation Learning

Lecture 04 | Part 2

The Spectral Theorem

Eigenvectors

Let A be an n × n matrix. An eigenvector of A with eigenvalue λ is a nonzero vector v such that Av = λv.

Eigenvectors (of Linear Transformations)

Let \vec{f} be a linear transformation. An **eigenvector** of \vec{f} with **eigenvalue** λ is a nonzero vector \vec{v} such that $f(\vec{v}) = \lambda \vec{v}$.

Geometric Interpretation

• When \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.

Possibly by a negative amount.

Symmetric Matrices

► Recall: a matrix A is **symmetric** if $A^T = A$.

The Spectral Theorem²

Theorem: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

²for symmetric matrices

What?

- What does the spectral theorem mean?
- ► What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Example Linear Transformation

$$A = \begin{pmatrix} -2 & -1 \\ -5 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

 $A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$$

 Symmetric linear transformations have axes of symmetry.

The axes of symmetry are **orthogonal** to one another.

The action of *f* along an axis of symmetry is simply to scale its input.

The size of this scaling can be different for each axis.

Main Idea

The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.

Exercise

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvector of the transformation.

 $A = \begin{pmatrix} 5 & -0.1 \\ -0.1 & 2 \end{pmatrix}$

 $A = \begin{pmatrix} 5 & -0.2 \\ -0.2 & 2 \end{pmatrix}$

$$A = \begin{pmatrix} 5 & -0.3 \\ -0.3 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.4 \\ -0.4 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.5 \\ -0.5 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.6 \\ -0.6 & 2 \end{pmatrix}$$

 $A = \begin{pmatrix} 5 & -0.7 \\ -0.7 & 2 \end{pmatrix}$

$$A = \begin{pmatrix} 5 & -0.8 \\ -0.8 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.9 \\ -0.9 & 2 \end{pmatrix}$$

The Spectral Theorem³

Theorem: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

³for symmetric matrices

What about total symmetry?

Every vector is an eigenvector.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

Computing Eigenvectors

