$$
\text { DST } 140 B
$$

Representation Learning The Spectral Theorem

Eigenvectors

\Rightarrow Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$

Eigenvectors (of Linear Transformations)

- Let \vec{f} be a linear transformation. An eigenvector of \vec{f} with eigenvalue λ is a nonzero vector \vec{v} such that $f(\vec{v})=\lambda \vec{v}$.

$$
f(\vec{v})=A_{-} \vec{v}=\lambda \vec{v}
$$

Geometric Interpretation

- When \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
- Possibly by a negative amount.

Symmetric Matrices

$$
\begin{aligned}
& \text { Recall: a matrix } A \text { is symmetric if } A^{T}=A . \\
& {\left[\begin{array}{ccc}
1 & 0 & -100 \\
0 & 2 & 183 \\
-100 & 120 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -3 \\
-3 & 2 \\
5
\end{array}\right]}
\end{aligned}
$$

The Spectral Theorem ${ }^{1}$

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

What?

- What does the spectral theorem mean?

What is an eigenvector, really?

- Why are they useful?

Example Linear Transformation

Example Linear Transformation

$$
\begin{aligned}
& A e^{(1)}=\binom{-2}{-5} \\
& A e^{(2)}=\left(\begin{array}{cc}
-1 \\
A=\left(\begin{array}{cc}
-2 & -1 \\
-5 & 3
\end{array}\right) \\
0
\end{array}\right)
\end{aligned}
$$

Example Symmetric Linear Transformation

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

Example Symmetric Linear Transformation

$$
A=\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

Observation \#1

- Symmetric linear transformations have axes of symmetry.

Observation \#2

The axes of symmetry are orthogonal to one another.

Observation \#3

The action of \vec{f} along an axis of symmetry is simply to scale its input.

Observation \#4

The size of this scaling can be different for each axis.

Main Idea

The eigenvectors of a symmetric linear transformation (matrix) are its axes of symmetry. The eigenvalues describe how much each axis of symmetry is scaled.

Off-diagonal elements

$$
\left.\sim^{2}\right)^{\kappa}
$$

$$
A=\left(\begin{array}{cc}
5 & \frac{-0.1}{2}
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.2 \\
-0.2 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.3 \\
-0.3 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.4 \\
-0.4 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.5 \\
-0.5 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.6 \\
-0.6 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.7 \\
-0.7 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.8 \\
-0.8 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.9 \\
-0.9 & 2
\end{array}\right)
$$

The Spectral Theorem ${ }^{2}$

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

${ }^{2}$ for symmetric matrices

What about total symmetry?

$$
\begin{aligned}
& \left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3 x_{1}}{3 x_{2}} \\
& \left.\left.\begin{array}{l}
\text { Every vector is an }=3\binom{x_{1}}{\text { eigenvector. }} \\
\quad A=\left(\begin{array}{ll}
3 & 0 \\
0
\end{array}\right) \quad \lambda=3
\end{array}\right) . \begin{array}{l}
3
\end{array}\right)
\end{aligned}
$$

$A_{i j}=A_{i z}$

Computing Eigenvectors

$$
\begin{aligned}
& \text { ivectors } \\
& A=\left[\begin{array}{ll}
2 & -1 \\
-1 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { "> } A=n p . \operatorname{array}([[2,-1],[-1,3]]) \\
& \text { "> np.linalg.eigh(A) } \lambda_{2} \\
& \text { (array([1.38196601, 43.61803399]), } \\
& \operatorname{array}([-0.85065081,-0.52573111] \text {, } \\
& {\left[\frac{-0.52573111,}{V_{l}} \frac{0.85065081]])}{V_{l}}\right.}
\end{aligned}
$$

DEC $140 B$ Representation Learning Lecture $05 \mid$ Part 2
Why are eigenvectors useful?

OK, but why are eigenvectors ${ }^{3}$ useful?

Eigenvectors are nice "building blocks" (basis vectors).

- Eigenvectors are maximizers (or minimizers).
- Eigenvectors are equilibria.

[^0]
Eigendecomposition

- Any vector \vec{x} can be written in terms of the eigenvectors of a symmetric matrix.
- This is called its eigendecomposition.

Observation \#1

$\vec{f}(\vec{x})$ is longest along the "main" axis of symmetry.

- In the direction of the eigenvector with largest eigenvalue.

$$
|\vec{x}| \mid=1
$$

Main Idea

To maximize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick $\overrightarrow{\vec{x}}$ to be an eigenvector of f with the largest eigenvalue (in abs. value),

Main Idea

To minimize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in àbs. value).

Proof $\|\vec{f}(x)\|$
Show that the maximizer of $\|A \vec{x}\|$ st., $\|\vec{x}\|=1$ is the top eigenvector of A.

$$
\begin{aligned}
& \max _{\vec{x}}\|A \vec{x}\| \\
& \text { set. }\|\vec{x}\|=1 \\
& \lambda^{*}=\text { top eigeneneen of } \theta
\end{aligned}
$$

Corollary

To maximize $\vec{x} \cdot A \vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

Example

Maximize $4 x_{1}^{2}+2 x_{2}^{2}+3 x_{1} x_{2}$ subject to $x_{1}^{2}+x_{2}^{2}=1$

Observation \#2

- $\vec{f}(\vec{x})$ rotates \vec{x} towards the "top" eigenvector \vec{v}.
$\Rightarrow \vec{v}$ is an equilibrium

The Power Method

Method for computing the top eigenvector/value of A.

- Initialize $\vec{x}^{(0)}$ randomly
- Repeat until convergence:

$$
\operatorname{Set}\left(\vec{x}^{(i+1)}=A \vec{x}^{(i)} /\left\|A \vec{x}^{(i)}\right\|\right.
$$

[^0]: ${ }^{3}$ of symmetric matrices

