DSC 140B Representation Learning

Lecture 05 | Part 1

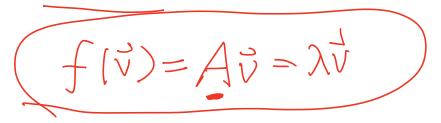
The Spectral Theorem

Eigenvectors

Let A be an n × n matrix. An eigenvector of A with eigenvalue λ is a nonzero vector v such that Av = λv

Eigenvectors (of Linear Transformations)

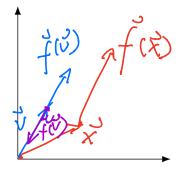
Let \vec{f} be a linear transformation. An **eigenvector** of \vec{f} with **eigenvalue** λ is a nonzero vector \vec{v} such that $f(\vec{v}) = \lambda \vec{v}$.



Geometric Interpretation

• When \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.

Possibly by a negative amount.



Symmetric Matrices

► Recall: a matrix A is **symmetric** if $A^T = A$.

$$1 \circ -(\circ \circ 7)$$

 $0 Z (23)$
 $-(\circ \circ 7)$

 $A_{\vec{v}} \stackrel{\sim}{=} A_{\vec{v}}$

The Spectral Theorem¹

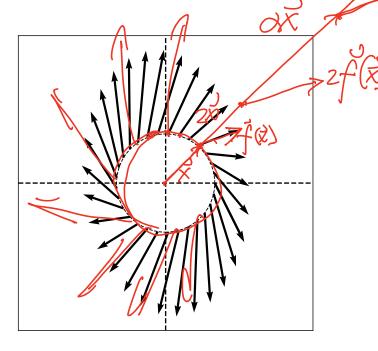
Theorem: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

¹for symmetric matrices

What?

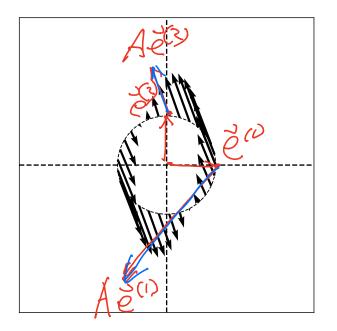
- What does the spectral theorem mean?
- ▶ What is an eigenvector, really?
- Why are they useful?

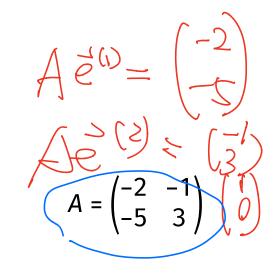
Example Linear Transformation

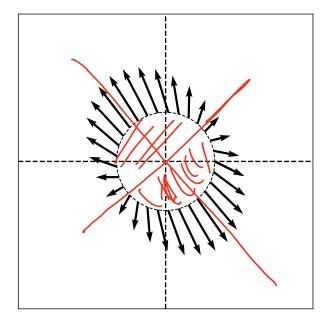


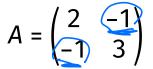
5 A =

Example Linear Transformation

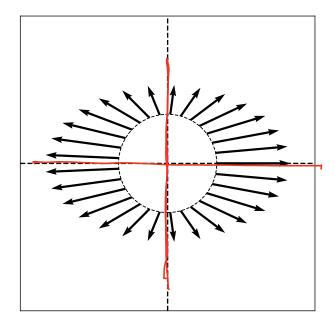




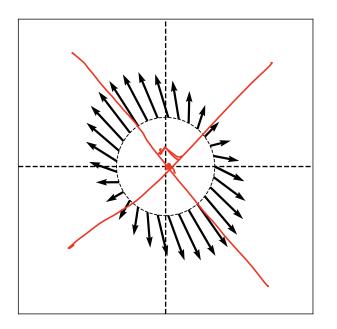




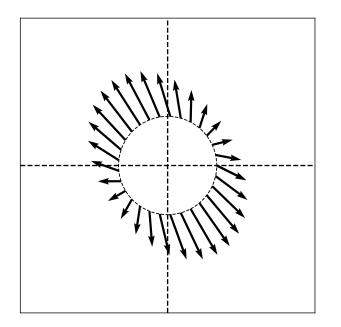
Example Symmetric Linear Transformation



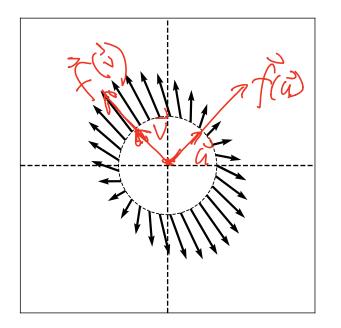
 $A = \begin{pmatrix} 5 & 0 \\ 0 & - \end{pmatrix}$



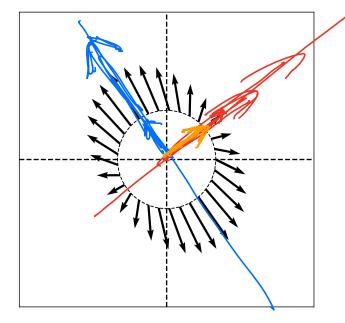
 Symmetric linear transformations have axes of symmetry.



The axes of symmetry are **orthogonal** to one another.



The action of f along an axis of symmetry is simply to scale its input.

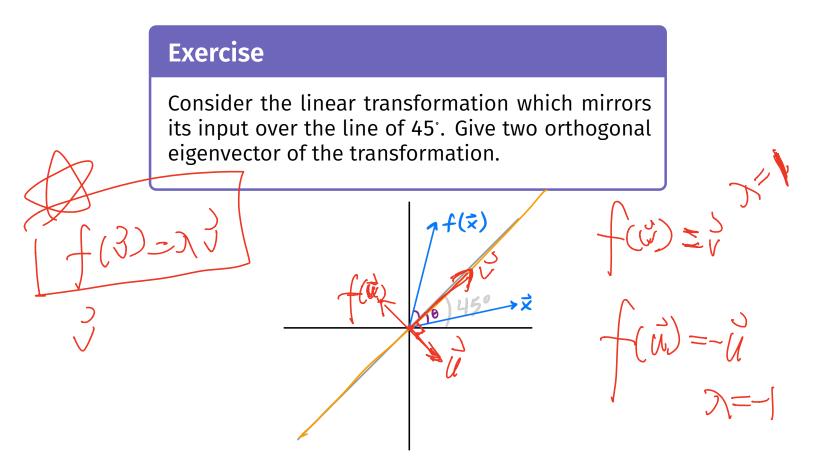


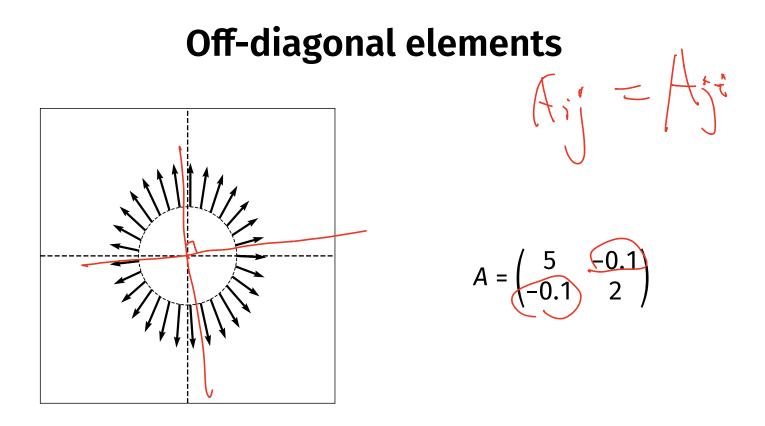
The size of this scaling can be different for each axis.

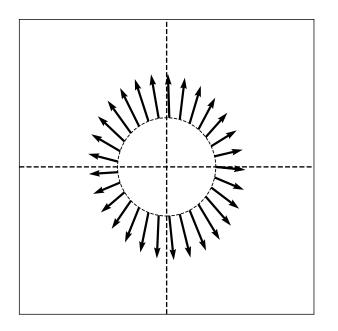
 \mathcal{L}

Main Idea

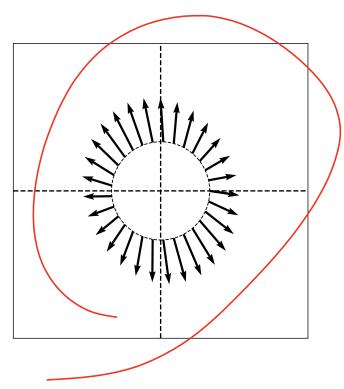
The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.



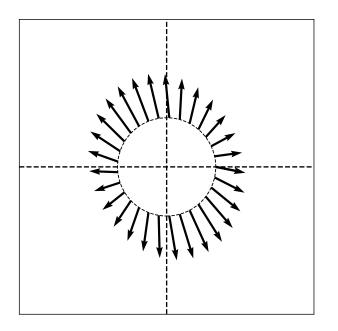




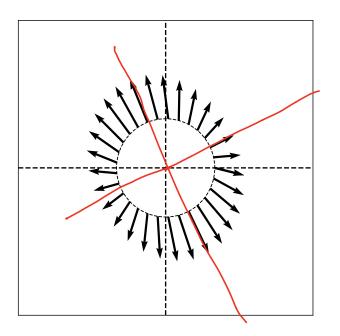
 $A = \begin{pmatrix} 5 & -0.2 \\ -0.2 & 2 \end{pmatrix}$



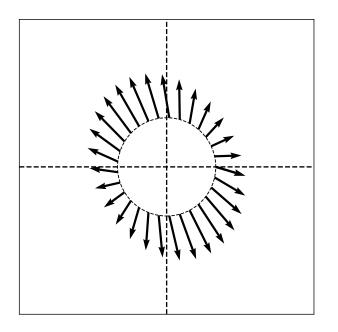
$$A = \begin{pmatrix} 5 & -0.3 \\ -0.3 & 2 \end{pmatrix}$$



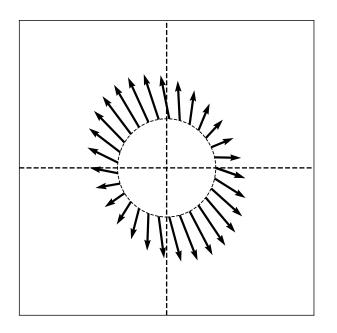
$$A = \begin{pmatrix} 5 & -0.4 \\ -0.4 & 2 \end{pmatrix}$$



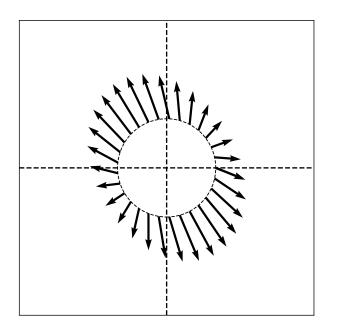
$$A = \begin{pmatrix} 5 & -0.5 \\ -0.5 & 2 \end{pmatrix}$$



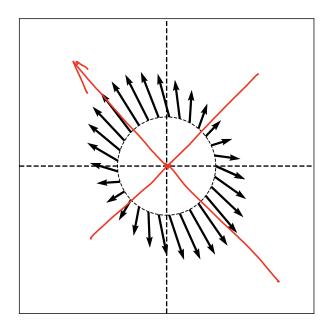
$$A = \begin{pmatrix} 5 & -0.6 \\ -0.6 & 2 \end{pmatrix}$$



 $A = \begin{pmatrix} 5 & -0.7 \\ -0.7 & 2 \end{pmatrix}$



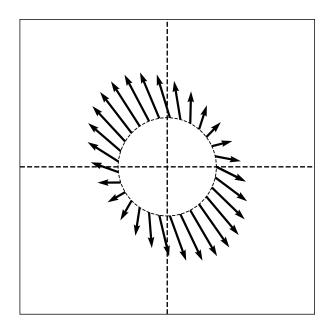
$$A = \begin{pmatrix} 5 & -0.8 \\ -0.8 & 2 \end{pmatrix}$$



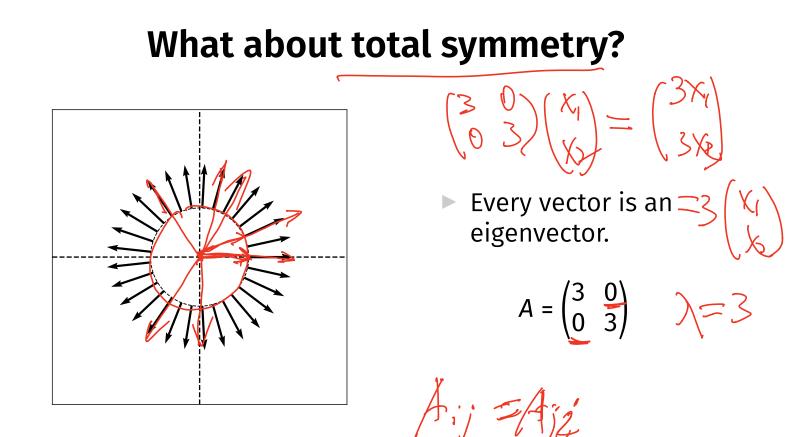
 $A = \begin{pmatrix} 5 & -0.9 \\ -0.9 & 2 \end{pmatrix}$

The Spectral Theorem²

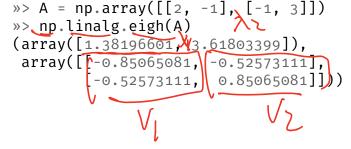
Theorem: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

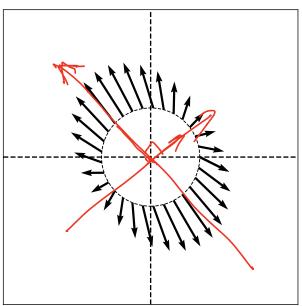


²for symmetric matrices



Computing Eigenvectors $\begin{bmatrix} -2 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ >> A = np.array([[2, -1], [-1, 3]]) >> np.linalg.eigh(A)

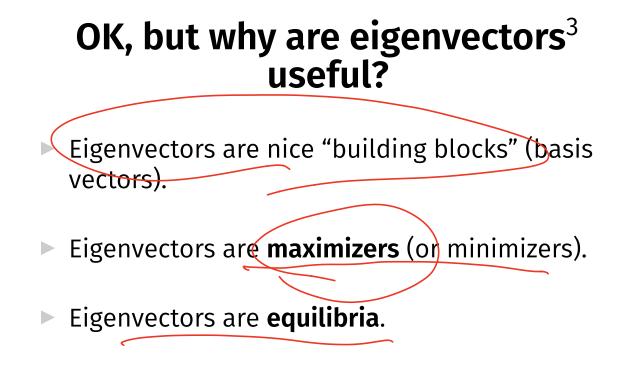




DSC 140B Representation Learning

Lecture 05 | Part 2

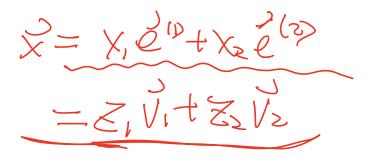
Why are eigenvectors useful?

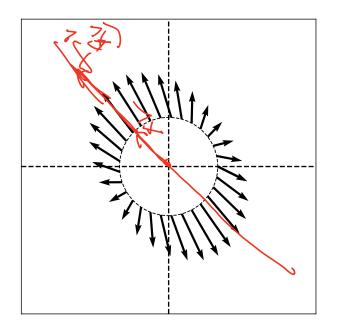


³of symmetric matrices

Eigendecomposition

- Any vector x can be written in terms of the eigenvectors of a symmetric matrix.
- This is called its eigendecomposition.





f(*x*) is longest along the "main" axis of symmetry.
 In the direction of the eigenvector with

the eigenvector with largest eigenvalue.

Main Idea

To maximize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the largest eigenvalue (in abs. value).

Main Idea

To minimize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in abs. value).

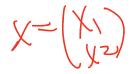
Show that the maximizer of $||A\vec{x}|| = 1$ is the top eigenvector of A.

 $\max_{\vec{X}, \vec{X}} \| A \vec{X} \|$ S.t. $\| X \| = 1$

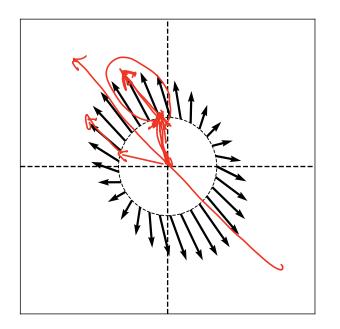
Corollary

To maximize $\vec{x} \cdot A\vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

Example



• Maximize $4x_1^2 + 2x_2^2 + 3x_1x_2$ subject to $x_1^2 + x_2^2 = 1$



f(x) rotates x towards the "top" eigenvector v.

v is an equilibrium

The Power Method

- Method for computing the top eigenvector/value of A.
- ► Initialize $\vec{x}^{(0)}$ randomly

Repeat until convergence:
Set $\vec{x}^{(i+1)} = A\vec{x}^{(i)} / ||A\vec{x}^{(i)}||$