DSC 140B Representation Learning

Lecture 06 | Part 1

Change of Basis Matrices

Changing Basis

Suppose
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)}$$
.

- $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ form a new, **orthonormal** basis \mathcal{U} .
- What is $[\vec{x}]_{\mathcal{U}}$?

Final term That is, what are b_1 and b_2 in $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$.

Exercise

Find the coordinates of \vec{x} in the new basis:

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^T$$
$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^T$$
$$\vec{x} = (1/2, 1)^T$$

Change of Basis

Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, **orthonormal** basis vectors.

We know
$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}$$

• We want to write $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$

Solution

$$b_1 = \vec{x} \cdot \hat{u}^{(1)}$$
 $b_2 = \vec{x} \cdot \hat{u}^{(2)}$

Change of Basis Matrix

Changing basis is a linear transformation

$$\vec{f}(\vec{x}) = (\vec{x} \cdot \hat{u}^{(1)})\hat{u}^{(1)} + (\vec{x} \cdot \hat{u}^{(2)})\hat{u}^{(2)} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \end{pmatrix}_{\mathcal{U}}$$

We can represent it with a matrix

$$\begin{pmatrix}\uparrow&\uparrow\\f(\hat{e}^{(1)})&f(\hat{e}^{(2)})\\\downarrow&\downarrow\end{pmatrix}$$

Example

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$
$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$
$$f(\hat{e}^{(1)}) =$$
$$f(\hat{e}^{(2)}) =$$
$$A =$$

Observation

The new basis vectors become the rows of the matrix.

Example

Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$
$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$
$$A = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}$$
$$\vec{x} = (1/2, 1)^{T}$$

Change of Basis Matrix

• Let $\hat{u}^{(1)}, \dots, \hat{u}^{(d)}$ form an orthonormal basis \mathcal{U} .

The matrix U whose rows are the new basis vectors is the change of basis matrix from the standard basis to U:

$$U = \begin{pmatrix} \leftarrow \hat{u}^{(1)} \rightarrow \\ \leftarrow \hat{u}^{(2)} \rightarrow \\ \vdots \\ \leftarrow \hat{u}^{(d)} \rightarrow \end{pmatrix}$$

Change of Basis Matrix

▶ If U is the change of basis matrix, $[\vec{x}]_{\mathcal{U}} = U\vec{x}$

• To go *back* to the standard basis, use U^T :

 $\vec{x} = U^T [\vec{x}]_{\mathcal{U}}$

Exercise

Let U be the change of basis matrix for U. What is $U^T U$?

Hint: What is $U^{T}(U\vec{x})$?

Representation Learning

Lecture 06 | Part 2

Diagonalization

Matrices of a Transformation

• Let $\vec{f} : \mathbb{R}^d \to \mathbb{R}^d$ be a linear transformation

• The matrix representing \vec{f} wrt the **standard basis** is:

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \cdots & \vec{f}(\hat{e}^{(d)}) \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

Matrices of a Transformation

▶ If we use a different basis $U = \{\hat{u}^{(1)}, ..., \hat{u}^{(d)}\}$, the matrix representing \vec{f} is:

$$A_{\mathcal{U}} = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

► If $\vec{y} = A\vec{x}$, then $[\vec{y}]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$

Diagonal Matrices

- Diagonal matrices are very nice / easy to work with.
- Suppose A is a matrix. Is there a basis U where A_U is diagonal?
- > Yes! *If* A is symmetric.

The Spectral Theorem¹

Theorem: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

¹for symmetric matrices

Eigendecomposition

- ▶ If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ to form an orthonormal basis.
- Any vector x can be written in terms of this eigenbasis.
- This is called its eigendecomposition:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + \dots + b_d \hat{u}^{(d)}$$

Matrix in the Eigenbasis

- Claim: the matrix of a linear transformation *f*, written in a basis of its eigenvectors, is a diagonal matrix.
- The entries along the diagonal will be the eigenvalues.

Why?

$$A_{\mathcal{U}} = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

•
$$\vec{f}(\hat{u}^{(1)}) = \lambda_1 \hat{u}^{(1)}$$
, so $[\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} = (\lambda_1, 0, ..., 0)^T$.
• $\vec{f}(\hat{u}^{(2)}) = \lambda_2 \hat{u}^{(2)}$, so $[\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} = (0, \lambda_2, ..., 0)^T$.
• ...

Matrix Multiplication

We have seen that matrix multiplication evaluates a linear transformation.

In the standard basis:

$$\vec{f}(\vec{x}) = A\vec{x}$$

In another basis:

$$[\vec{f}(\vec{x})]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$$

Diagonalization

- Another way to compute $\vec{f}(x)$, starting with \vec{x} in the standard basis:
 - 1. Change basis to the eigenbasis with U.
 - 2. Apply \vec{f} in the eigenbasis with the diagonal $A_{\mathcal{U}}$.
 - 3. Go *back* to the standard basis with U^{T} .

► That is,
$$A\vec{x} = U^T A_U U \vec{x}$$
. It follows that $A = U^T A_U U$.

Spectral Theorem (Again)

- Theorem: Let A be an n × n symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix A such that A = U^TAU.
- The rows of U are the eigenvectors of A, and the entries of Λ are its eigenvalues.

U is said to diagonalize A.

DSC 140B Representation Learning

Lecture 06 | Part 3

Dimensionality Reduction

High Dimensional Data

Data is often high dimensional (many features)

Example: Netflix user

- Number of movies watched
- Number of movies saved
- Total time watched
- Number of logins
- Days since signup
- Average rating for comedy
- Average rating for drama

▶

High Dimensional Data

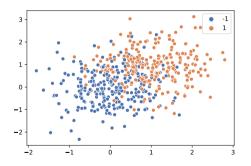
- More features can give us more information
- But it can also cause problems
- Today: how do we reduce dimensionality without losing too much information?

More Features, More Problems

Difficulties with high dimensional data:

- 1. Requires more compute time / space
- 2. Hard to visualize / explore
- 3. The "curse of dimensionality": it's harder to learn

Experiment



- On this data, low 80% train/test accuracy
- Add 400 features of pure noise, re-train
- Now: 100% train accuracy, 58% test accuracy
- Overfitting!

Task: Dimensionality Reduction

- We'd often like to reduce the dimensionality to improve performance, or to visualize.
- We will typically lose information
- Want to minimize the loss of useful information

Redundancy

- Two (or more) features may share the same information.
- Intuition: we may not need all of them.

Today

- Today we'll think about reducing dimensionality from R^d to R¹
- Next time we'll go from \mathbb{R}^d to $\mathbb{R}^{d'}$, with $d' \leq d$

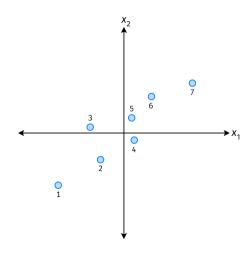
Today's Example

- Let's say we represent a phone with two features:
 x₁: screen width
 - \triangleright x_2 : phone weight
- Both measure a phone's "size".
- Instead of representing a phone with both x₁ and x₂, can we just use a single number, z?
 Reduce dimensionality from 2 to 1.

First Approach: Remove Features

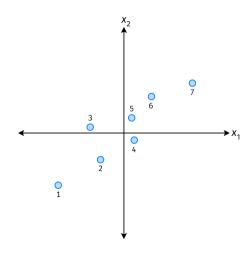
- Screen width and weight share information.
- Idea: keep one feature, remove the other.
- That is, set new feature $z = x_1$ (or $z = x_2$).

Removing Features



- Say we set $z^{(i)} = \vec{x}_1^{(i)}$ for each phone, *i*.
- Observe: $z^{(4)} > z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features



- Say we set $z^{(i)} = \vec{x}_2^{(i)}$ for each phone, *i*.
- Observe: $z^{(3)} > z^{(4)}$.
- Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

• **Idea**: *z* should be a combination of x_1 and x_2 .

One approach: linear combination.

$$z = u_1 x_1 + u_2 x_2$$
$$= \vec{u} \cdot \vec{x}$$

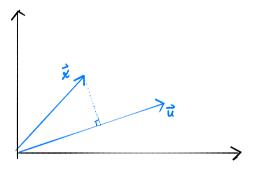
u₁,..., u₂ are the mixture coefficients; we can choose them.

Normalization

- Mixture coefficients generalize proportions.
- We could assume, e.g., $|u_1| + |u_2| = 1$.
- But it makes the math easier if we assume $u_1^2 + u_2^2 = 1$.

Equivalently, if $\vec{u} = (u_1, u_2)^T$, assume $\|\vec{u}\| = 1$

Geometric Interpretation



- ► z measures how much of \vec{x} is in the direction of \vec{u}
- ▶ If $\vec{u} = (1, 0)^T$, then $z = x_1$

▶ If
$$\vec{u} = (0, 1)^T$$
, then $z = x_2$

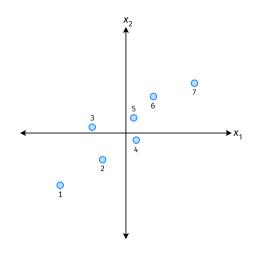
Choosing \vec{u}

- Suppose we have only two features:
 - x_1 : screen size
 - \triangleright x_2 : phone thickness
- We'll create single new feature, z, from x₁ and x₂.
 Assume z = u₁x₁ + u₂x₂ = x · u
 Interpretation: z is a measure of a phone's size
- How should we choose $\vec{u} = (u_1, u_2)^T$?

Visualization

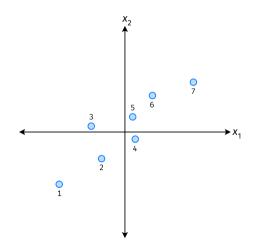
http://dsc140b.com/static/vis/pca-max_variance/

Example



- \blacktriangleright *\vec{u}* defines a direction
- ► $\vec{z}^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example



- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- Idea: *u* should point in direction of "max variance".

Our Algorithm (Informally)

• **Given**: data points $\vec{x}^{(1)}, \dots, \vec{x}^{(n)} \in \mathbb{R}^d$

Pick *u* to be the direction of "max variance"

Create a new feature, z, for each point:

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$

PCA

This algorithm is called Principal Component Analysis, or PCA.

The direction of maximum variance is called the principal component.

Exercise

Suppose the direction of maximum variance in a data set is

$$\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})^{T}$$

Let

$$\vec{x}^{(1)} = (3, -2)^T$$

$$\vec{x}^{(2)} = (1, 4)^T$$

What are $z^{(1)}$ and $z^{(2)}$?

Problem

How do we compute the "direction of maximum variance"?