DST $140 B$ Representation Learning | Lecture 06 |
| :---: |
| Change of Basis 1 |

Changing Basis

- Suppose $\vec{x}=\binom{a_{1}}{a_{2}}=a_{1} \hat{e}^{(1)}+a_{2} \hat{e}^{(2)}$.
- $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ form a new, orthonormal basis \mathcal{U}.
\Rightarrow What is $[\vec{x}]_{\mathcal{U}}$?
- That is, what are b_{1} and b_{2} in $\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}$.

Exercise

Find the coordinates of \vec{x} in the new basis:

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
\vec{x} & =(1 / 2,1)^{T}
\end{aligned}
$$

Change of Basis

- Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, orthonormal basis vectors.
- We know $\vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}$
- We want to write $\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}$
- Solution

$$
b_{1}=\vec{x} \cdot \hat{u}^{(1)} \quad b_{2}=\vec{x} \cdot \hat{u}^{(2)}
$$

Change of Basis Matrix

- Changing basis is a linear transformation

$$
\vec{f}(\vec{x})=\left(\vec{x} \cdot \hat{u}^{(1)}\right) \hat{u}^{(1)}+\left(\vec{x} \cdot \hat{u}^{(2)}\right) \hat{u}^{(2)}=\binom{\vec{x} \cdot \hat{u}^{(1)}}{\vec{x} \cdot \hat{u}^{(2)}}
$$

- We can represent it with a matrix

$$
\left(\begin{array}{cc}
\uparrow & \uparrow \\
f\left(\hat{e}^{(1)}\right) & f\left(\hat{e}^{(2)}\right) \\
\downarrow & \downarrow
\end{array}\right)
$$

Example

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
f\left(\hat{e}^{(1)}\right) & = \\
f\left(\hat{e}^{(2)}\right) & = \\
A & =
\end{aligned}
$$

Observation

The new basis vectors become the rows of the matrix.

Example

- Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.

$$
\begin{aligned}
\hat{u}^{(1)} & =(\sqrt{3} / 2,1 / 2)^{T} \\
\hat{u}^{(2)} & =(-1 / 2, \sqrt{3} / 2)^{T} \\
A & =\left(\begin{array}{cc}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right) \\
\vec{x} & =(1 / 2,1)^{T}
\end{aligned}
$$

Change of Basis Matrix

- Let $\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}$ form an orthonormal basis \mathcal{U}.
- The matrix U whose rows are the new basis vectors is the change of basis matrix from the standard basis to \mathcal{U} :

$$
U=\left(\begin{array}{cc}
\leftarrow \hat{u}^{(1)} & \rightarrow \\
\leftarrow \hat{u}^{(2)} & \rightarrow \\
\vdots \\
\leftarrow \hat{u}^{(d)} & \rightarrow
\end{array}\right)
$$

Change of Basis Matrix

- If U is the change of basis matrix, $[\vec{x}]_{\mathcal{U}}=U \vec{x}$
- To go back to the standard basis, use U^{\top} :

$$
\vec{x}=U^{\top}[\vec{x}]_{U}
$$

Exercise

Let U be the change of basis matrix for \mathcal{U}. What is $U^{\top} U$?

Hint: What is $U^{\top}(U \vec{x})$?

DST $140 B$
Representation Learning Lecture 06 | Part 2
Diagonalization

Matrices of a Transformation

Let $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a linear transformation

- The matrix representing \vec{f} wrt the standard basis is:

$$
A=\left(\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \ldots & \vec{f}\left(\hat{e}^{(d)}\right) \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right)
$$

Matrices of a Transformation

- If we use a different basis $\mathcal{U}=\left\{\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}\right\}$, the matrix representing \vec{f} is:

$$
A_{\mathcal{U}}=\left(\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
{\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{\mathcal{U}}} & {\left[\vec{f}\left(\hat{u}^{(2)}\right)\right]_{\mathcal{U}}} & \cdots & {\left[\vec{f}\left(\hat{u}^{(d)}\right)\right]_{\mathcal{U}}} \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right)
$$

- If $\vec{y}=A \vec{x}$, then $[\vec{y}]_{\mathcal{U}}=A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$

Diagonal Matrices

- Diagonal matrices are very nice / easy to work with.
- Suppose A is a matrix. Is there a basis \mathcal{U} where $A_{\mathcal{U}}$ is diagonal?
- Yes! If A is symmetric.

The Spectral Theorem ${ }^{1}$

\Rightarrow Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

Eigendecomposition

- If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, \ldots, \hat{u}^{(d)}$ to form an orthonormal basis.
- Any vector \vec{x} can be written in terms of this eigenbasis.
- This is called its eigendecomposition:

$$
\vec{x}=b_{1} \hat{u}^{(1)}+b_{2} \hat{u}^{(2)}+\ldots+b_{d} \hat{u}^{(d)}
$$

Matrix in the Eigenbasis

- Claim: the matrix of a linear transformation \vec{f}, written in a basis of its eigenvectors, is a diagonal matrix.
- The entries along the diagonal will be the eigenvalues.

Why?

$$
A_{u}=\left(\begin{array}{ccc}
\left.\overrightarrow{\vec{f}}\left(\hat{u}^{(1)}\right)\right]_{u} & \stackrel{\left.\left.\vec{f}\left(\hat{u}^{(2)}\right)\right]\right]_{u}}{\downarrow} & \cdots \\
\downarrow & \left.\left.\cdots \vec{f}\left(\hat{u}^{(d)}\right)\right]\right]_{u} \\
\downarrow
\end{array}\right)
$$

$$
\begin{aligned}
& -\vec{f}\left(\hat{u}^{(1)}\right)=\lambda_{1} \hat{u}^{(1)} \text {, so }\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{u}=\left(\lambda_{1}, 0, \ldots, 0\right)^{\top} . \\
& \left.\vec{f}\left(\hat{u}^{2}\right)\right)=\lambda_{2} \hat{u}^{(2)} \text {, so }\left[\vec{f}\left(\hat{u}^{(2)}\right)\right]_{u}=\left(0, \lambda_{2}, \ldots, 0\right)^{\top} .
\end{aligned}
$$

Matrix Multiplication

- We have seen that matrix multiplication evaluates a linear transformation.
- In the standard basis:

$$
\vec{f}(\vec{x})=A \vec{x}
$$

- In another basis:

$$
[\vec{f}(\vec{x})]_{\mathcal{U}}=A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}
$$

Diagonalization

- Another way to compute $\vec{f}(x)$, starting with \vec{x} in the standard basis:

1. Change basis to the eigenbasis with U.
2. Apply \vec{f} in the eigenbasis with the diagonal $A_{\mathcal{U}}$.
3. Go back to the standard basis with U^{\top}.
\Rightarrow That is, $A \vec{x}=U^{\top} A_{\mathcal{U}} U \vec{x}$. It follows that $A=U^{\top} A_{\mathcal{U}} U$.

Spectral Theorem (Again)

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix \wedge such that $A=U^{\top} \wedge U$.
- The rows of U are the eigenvectors of A, and the entries of \wedge are its eigenvalues.
- U is said to diagonalize A.

DST $140 B$ Representation Learning Lecture $06 \mid$ Part 3
Dimensionality Reduction

High Dimensional Data

- Data is often high dimensional (many features)
- Example: Netflix user
- Number of movies watched
- Number of movies saved
- Total time watched
- Number of logins
- Days since signup
- Average rating for comedy
- Average rating for drama
\triangleright :

High Dimensional Data

- More features can give us more information
- But it can also cause problems
- Today: how do we reduce dimensionality without losing too much information?

More Features, More Problems

- Difficulties with high dimensional data:

1. Requires more compute time / space
2. Hard to visualize / explore
3. The "curse of dimensionality": it's harder to learn

Experiment

- On this data, low 80\% train/test accuracy
- Add 400 features of pure noise, re-train
- Now: 100\% train accuracy, 58\% test accuracy
> Overfitting!

Task: Dimensionality Reduction

- We'd often like to reduce the dimensionality to improve performance, or to visualize.
- We will typically lose information
- Want to minimize the loss of useful information

Redundancy

- Two (or more) features may share the same information.
- Intuition: we may not need all of them.

Today

Today we'll think about reducing dimensionality from \mathbb{R}^{d} to \mathbb{R}^{1}

- Next time we'll go from \mathbb{R}^{d} to $\mathbb{R}^{d^{\prime}}$, with $d^{\prime} \leq d$

Today's Example

- Let's say we represent a phone with two features:
$>x_{1}$: screen width
$\Rightarrow x_{2}$: phone weight
- Both measure a phone’s "size".
- Instead of representing a phone with both x_{1} and x_{2}, can we just use a single number, z ?
- Reduce dimensionality from 2 to 1 .

First Approach: Remove Features

- Screen width and weight share information.
- Idea: keep one feature, remove the other.
- That is, set new feature $z=x_{1}\left(\right.$ or $\left.z=x_{2}\right)$.

Removing Features

- Say we set $z^{(i)}=\vec{x}_{1}^{(i)}$ for each phone, i.
- Observe: $z^{(4)}>z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features

- Say we set $z^{(i)}=\vec{x}_{2}^{(i)}$ for each phone, i.
- Observe: $z^{(3)}>z^{(4)}$.
- Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

Idea: z should be a combination of x_{1} and x_{2}.

- One approach: linear combination.

$$
\begin{aligned}
z & =u_{1} x_{1}+u_{2} x_{2} \\
& =\vec{u} \cdot \vec{x}
\end{aligned}
$$

u_{1}, \ldots, u_{2} are the mixture coefficients; we can choose them.

Normalization

- Mixture coefficients generalize proportions.
- We could assume, e.g., $\left|u_{1}\right|+\left|u_{2}\right|=1$.
- But it makes the math easier if we assume $u_{1}^{2}+u_{2}^{2}=1$.
- Equivalently, if $\vec{u}=\left(u_{1}, u_{2}\right)^{T}$, assume $\|\vec{u}\|=1$

Geometric Interpretation

> z measures how much of \vec{x} is in the direction of \vec{u}

- If $\vec{u}=(1,0)^{\top}$, then $z=x_{1}$
- If $\vec{u}=(0,1)^{\top}$, then $z=x_{2}$

Choosing \vec{u}

- Suppose we have only two features:
x_{1} : screen size
x_{2} : phone thickness
\Rightarrow We'll create single new feature, z, from x_{1} and x_{2}.
\Rightarrow Assume $z=u_{1} x_{1}+u_{2} x_{2}=\vec{x} \cdot \vec{u}$
- Interpretation: z is a measure of a phone's size
- How should we choose $\vec{u}=\left(u_{1}, u_{2}\right)^{T}$?

Visualization

http://dsc140b.com/static/vis/pca-max_variance/

Example

- \vec{u} defines a direction
$\vec{z}^{(i)}=\vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example

- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- Idea: \vec{u} should point in direction of "max variance".

Our Algorithm (Informally)

\triangleright Given: data points $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)} \in \mathbb{R}^{d}$

- Pick \vec{u} to be the direction of "max variance"
- Create a new feature, z, for each point:

$$
z^{(i)}=\vec{x}^{(i)} \cdot \vec{u}
$$

PCA

- This algorithm is called Principal Component Analysis, or PCA.
- The direction of maximum variance is called the principal component.

Exercise

Suppose the direction of maximum variance in a data set is

$$
\vec{u}=(1 / \sqrt{2},-1 / \sqrt{2})^{T}
$$

Let
$\vec{x}^{(1)}=(3,-2)^{\top}$

- $\vec{x}^{(2)}=(1,4)^{T}$

What are $z^{(1)}$ and $z^{(2)}$?

Problem

- How do we compute the "direction of maximum variance"?

