DSC 140B Representation Learning

Lecture 07 | Part 1

Change of Basis Matrices

Changing Basis

• Suppose
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)}$$
.

- $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ form a new, **orthonormal** basis \mathcal{U} .
- What is $[\vec{x}]_{\mathcal{U}}$?

► That is, what are b_1 and b_2 in $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$.

Exercise

Find the coordinates of \vec{x} in the new basis:

 $\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^T$ $\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^T$ $\vec{x} = (1/2, 1)^T$

Change of Basis

Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, **orthonormal** basis vectors.

• We know
$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}$$

• We want to write $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$

Solution

$$b_1 = \vec{x} \cdot \hat{u}^{(1)}$$
 $b_2 = \vec{x} \cdot \hat{u}^{(2)}$

Change of Basis Matrix

Changing basis is a linear transformation

$$\vec{f}(\vec{x}) = (\vec{x} \cdot \hat{u}^{(1)})\hat{u}^{(1)} + (\vec{x} \cdot \hat{u}^{(2)})\hat{u}^{(2)} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \end{pmatrix}_{\mathcal{U}}$$

► We can represent it with a matrix

$$\begin{pmatrix} \uparrow & \uparrow \\ f(\hat{e}^{(1)}) & f(\hat{e}^{(2)}) \\ \downarrow & \downarrow \end{pmatrix}$$

Example

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^T$$
$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^T$$
$$f(\hat{e}^{(1)}) =$$
$$f(\hat{e}^{(2)}) =$$
$$A =$$

Observation

The new basis vectors become the rows of the matrix.

Example

Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$
$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$
$$A = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}$$
$$\vec{x} = (1/2, 1)^{T}$$

Change of Basis Matrix

▶ Let $\hat{u}^{(1)}$, ..., $\hat{u}^{(d)}$ form an <u>orthonormal</u> basis \mathcal{U} .

The matrix U whose rows are the new basis vectors is the change of basis matrix from the standard basis to U:

$$U = \begin{pmatrix} \leftarrow \hat{u}^{(1)} \rightarrow \\ \leftarrow \hat{u}^{(2)} \rightarrow \\ \vdots \\ \leftarrow \hat{u}^{(d)} \rightarrow \end{pmatrix}$$

Change of Basis Matrix

► If U is the change of basis matrix, $[\vec{x}]_{\mathcal{U}} = U\vec{x}$

• To go *back* to the standard basis, use U^T :

$$\vec{x} = U^{T}[\vec{x}]_{\mathcal{U}} \simeq \mathcal{U}^{T} \mathcal{U} \vec{\chi}$$

$$U^{T}U = I V$$

Exercise

Let U be the change of basis matrix for U. What is $U^T U$?

Hint: What is $U^{T}(U\vec{x})$?

DSC 140B Representation Learning

Lecture 07 | Part 2

Diagonalization

Matrices of a Transformation

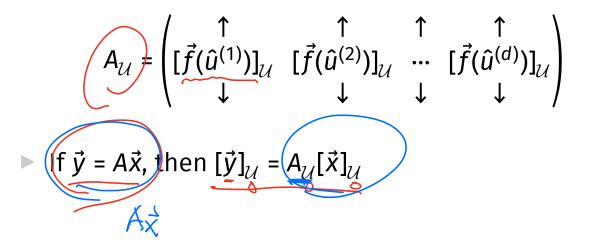
▶ Let \vec{f} : $\mathbb{R}^d \to \mathbb{R}^d$ be a linear transformation

• The matrix representing \vec{f} wrt the **standard basis** is:

$$\begin{array}{c} A \neq \begin{pmatrix} \uparrow \\ \vec{f}(\hat{e}^{(1)}) \\ \downarrow \end{pmatrix} \begin{pmatrix} \uparrow \\ \vec{f}(\hat{e}^{(2)}) \\ \downarrow \end{pmatrix} \begin{pmatrix} \uparrow \\ \vec{f}(\hat{e}^{(2)}) \\ \downarrow \end{pmatrix} \begin{pmatrix} \uparrow \\ \vec{f}(\hat{e}^{(d)}) \\ \downarrow \end{pmatrix} \end{pmatrix}$$

Matrices of a Transformation

► If we use a different basis $\mathcal{U} = \{\hat{u}^{(1)}, \dots, \hat{u}^{(d)}\}$, the matrix representing \vec{f} is:



- Suppose <u>A</u> is a matrix. Is there a basis \mathcal{U} where $A_{\mathcal{U}}$ is diagonal? $A_{\mathcal{X}} \cong \sum_{i=1}^{d} A_{ii} \times_{i}$

► Yes! *If* A is symmetric.

The Spectral Theorem¹

Theorem: Let A be an n × n symmetric matrix. Then there exist <u>n eigenvectors</u> of A which are all mutually orthogonal.

¹for symmetric matrices

Eigendecomposition

- ▶ If <u>A</u> is a symmetric matrix, we can pick *d* of its eigenvectors $\hat{u}^{(1)}, \dots, \hat{u}^{(d)}$ to form an orthonormal basis.
- Any vector x can be written in terms of this eigenbasis.
- ► This is called its **eigendecomposition**:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + \dots + b_d \hat{u}^{(d)}$$

Matrix in the Eigenbasis

= 0 = 0

11= 5 U -- U - - 11

Claim: the matrix of a linear transformation *f*, written in a basis of its eigenvectors, is a diagonal matrix.

The entries along the diagonal will be the eigenvalues.

/hy?)]_{\mathcal{U}} [$\vec{f}(\hat{u}^{(2)})$]_{\mathcal{U}} $[\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}}$ (î (¹))] $A_{\mathcal{U}}$ $\begin{aligned} & (\hat{u}^{(1)}) = \lambda_1 \hat{u}^{(1)}, \text{ so } [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} = (\lambda_1, 0, \dots, 0)^T. \\ & (\hat{u}^{(2)}) = \lambda_2 \hat{u}^{(2)}, \text{ so } [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} = (0, \lambda_2, \dots, 0)^T. \end{aligned}$ Þ

Matrix Multiplication

We have seen that matrix multiplication evaluates a linear transformation.

In the standard basis:

$$\vec{f}(\vec{x}) = A\vec{x}$$

► In another basis:

$$[\vec{f}(\vec{x})]_{\mathcal{U}} = \mathsf{A}_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$$

Diagonalization

Another way to compute $\vec{f}(x)$, starting with \vec{x} in the standard basis:

1. Change basis to the eigenbasis with U.

2. Apply \vec{f} in the eigenbasis with the diagonal $A_{\mathcal{U}}$. $A_{\mathcal{U}} = A_{\mathcal{U}}$

3. Go back to the standard basis with U^{T} .

► That is $A\vec{x} = U^T A_U U \vec{x}$. It follows that $A = U^T A_U U$.

Spectral Theorem (Again)

- **Theorem**: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix Λ such that $A = U^T \Lambda U$.
- The rows of U are the eigenvectors of A, and the entries of <u>A</u> are its eigenvalues.

► *U* is said to **diagonalize** *A*.

DSC 140B Representation Learning

Lecture 07 | Part 3

Dimensionality Reduction

High Dimensional Data

- Data is often high dimensional (many features)
- Example: Netflix user
 Number of movies watched
 - Number of movies saved
 - Total time watched
 - Number of logins
 - Days since signup
 - Average rating for comedy
 - Average rating for drama

 $\mathcal{A} \simeq (000)$

0= (00000

High Dimensional Data

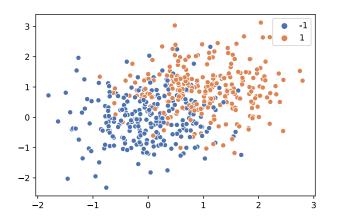
- More features can give us more information
- But it can also cause problems
- Today: how do we reduce dimensionality without losing too much information?

More Features, More Problems

Difficulties with high dimensional data:

- 1. Requires more compute time / space
- 2. Hard to visualize / explore
- 3. The "curse of dimensionality": it's harder to learn

Experiment



- On this data, low 80% train/test accuracy
- Add 400 features of pure noise, re-train
- Now: 100% train accuracy,
 58% test accuracy
- Overfitting!

Task: Dimensionality Reduction

- We'd often like to reduce the dimensionality to improve performance, or to visualize.
- We will typically lose information
- Want to minimize the loss of useful information

Redundancy

- Two (or more) features may share the same information.
- Intuition: we may not need all of them.

Today

- Today we'll think about reducing dimensionality from R^d to R¹
- ▶ Next time we'll go from \mathbb{R}^d to $\mathbb{R}^{d'}$, with $d' \leq d$

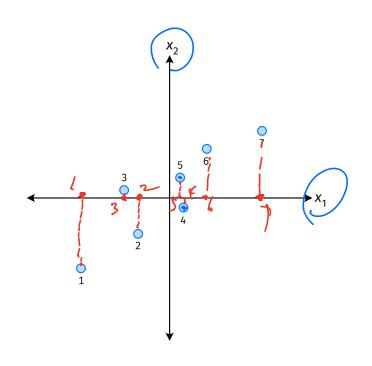
Today's Example

- Let's say we represent a phone with two features:
 x₁: screen width
 x₂: phone weight
- Both measure a phone's "size".
- Instead of representing a phone with both x₁ and x₂, can we just use a single number, z?
 Reduce dimensionality from 2 to 1.

First Approach: Remove Features

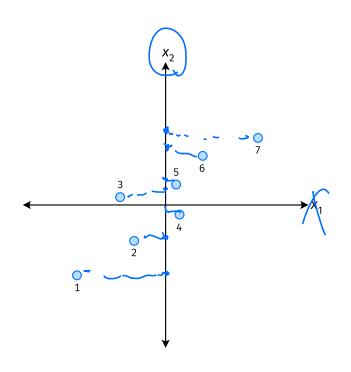
- Screen width and weight share information.
- Idea: keep one feature, remove the other.
- ► That is, set new feature $z = x_1$ (or $z = x_2$).

Removing Features



- Say we set $z^{(i)} = \vec{x}_1^{(i)}$ for each phone, *i*.
 - Observe: $z^{(4)} > z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features



- Say we set $z^{(i)} = \vec{x}_2^{(i)}$ for each phone, *i*.
- Observe: $z^{(3)} > z^{(4)}$.
- Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

• Idea: z should be a combination of x_1 and x_2 .

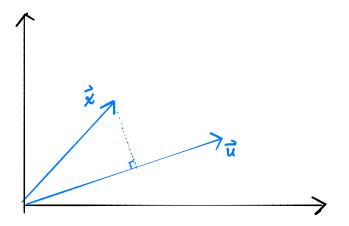
• One approach: linear combination. $z = u_1 x_1 + u_2 x_2$ $= \vec{u} \cdot \vec{x}$ (0)

• u_1, \dots, u_2 are the mixture coefficients; we can choose them.

- Mixture coefficients generalize proportions.
- ▶ We could assume, e.g., $|u_1| + |u_2| = 1$.
- But it makes the math easier if we assume $u_1^2 + u_2^2 = 1$.

► Equivalently, if $\vec{u} = (u_1, u_2)^T$, assume $\|\vec{u}\| = 1$

Geometric Interpretation



- z measures how much of x is in the direction of u
- If $\vec{u} = (1, 0)^T$, then $z = x_1$

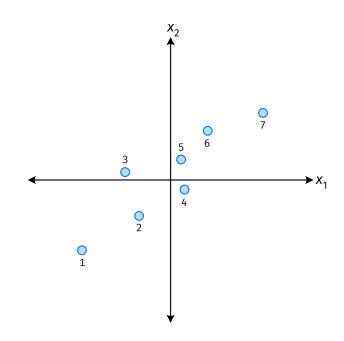
▶ If
$$\vec{u} = (0, 1)^T$$
, then $z = x_2$

Choosing \vec{u}

- Suppose we have only two features:
 - \blacktriangleright x_1 : screen size
 - \blacktriangleright x_2 : phone thickness
- ▶ We'll create single new feature, z, from x₁ and x₂.
 ▶ Assume z = u₁x₁ + u₂x₂ = x · u

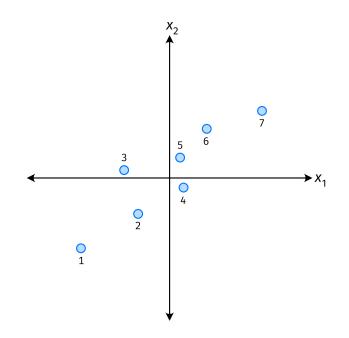
 ▶ Interpretation: z is a measure of a phone's size
- ► How should we choose $\vec{u} = (u_1, u_2)^T$?

Example



- \blacktriangleright *\vec{u}* defines a direction
- ► $\vec{z}^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example



- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- Idea: *u* should point in direction of "max variance".

Our Algorithm (Informally)

► **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$

▶ Pick \vec{u} to be the direction of "max variance"

Create a new feature, z, for each point:

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$

PCA

- This algorithm is called Principal Component Analysis, or PCA.
- The direction of maximum variance is called the principal component.

Exercise

Suppose the direction of maximum variance in a data set is

$$\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})^{T}$$

Let ► $\vec{x}^{(1)} = (3, -2)^T$ ► $\vec{x}^{(2)} = (1, 4)^T$ What are $z^{(1)}$ and $z^{(2)}$?

Problem

How do we compute the "direction of maximum variance"?