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Change of Basis Matrices



Changing Basis
Suppose X = (01) = a,é") + a,é®?,
a,

™ and 4@ form a new, orthonormal basis /.
What is [X],,?

That is, what are b, and b, in X = b, (" + b, (.



Find the coordinates of X in the new basis:

00 = (532, 1/2)"
0@ = (12, /32
%= (1/2,1)




Change of Basis

Suppose itV and §? are our new, orthonormal
basis vectors.

We know X = x,é\") + x,é®?

We want to write X = b, i) + b, i

Solution

1i

X1

()}
N

b1 :)?.0(1) b2



Change of Basis Matrix

Changing basis is a linear transformation

X XU
Hy ©

N =
v
Ny

f(%) = (%-aMat +<xu>>”—(ﬁ

We can represent it with a matrix

1
(f(é“)) f(é(z)))
Lo



Example



Observation

The new basis vectors become the rows of the
matrix.



Example

Multiplying by this matrix gives the coordinate
vector w.rt. the new basis.

0™ = (F3f2,)2)"
0 = (-1/2,V3/2)"
_ (\/§/2 1/2)
“\-1/2 V3)2
X=(1/2,1)



Change of Basis Matrix ’,\@
)

Let GV, ..., 0@ form an orthonormal basis ¢/. %;

The matrix U whose rows are the new basis

'
vectors is the change of basis matrix from the >
L — o)
standard basis to U: W ;

;)

PRGN
<—UL"L)—>




Change of Basis Matrix
If U is the change of basis matrix, [X],, = UX
To go back to the standard basis, use HT:

X = U'[X],, :(,KTU)E

=1 v



Let U be the change of basis matrix for .
What is UTU?

Hint: What is UT(UX)?
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Diagonalization



Matrices of a Transformation

Let f : RY - RY be a linear transformation

The matrix representing fwrt the standard basis

> T 7T T )
@ ey | 7). f(é(cn))
J X l J




Matrices of a Transformation

If we use a different basis &/ = {0\, ..., 49}, the

matrix representing f is:

T IR |
0 [f(u L*,(Z) *(d))]u
!




A=

Diagonal Matrices

O QO

TR,
C%?z\/
0 13

Q

Diagonal matrices are very nice / easy to work

with. /% _0 /‘f iU‘

Suppose A is a matrix. Is there a basis U where

A, S dlagonaP A)( Z/ Aw X

Yes! If A is symmetric. /



The Spectral Theorem'

Theorem: Let A be an n x n symmetric matrix.
Then there exist n eigenv rs of A which are all
mutually orthogonal.

for symmetric matrices



Eigendecomposition

If Ais a symmetric matrix, we can pick d of its
eigenvectors 4", ..., 4@ to form an orthonormal

basis. -

Any vector X can be written in terms of this
eigenbasis.

—_—

This is called its eigendecomposition:

X =b, 0"+ b0 + ...+ b,
&=~ — .




@\ O W
o T WS A

Matrix in the Eigenbasis ““‘MQ
(,( N

Claim: the matrix of a linear transformation f
written in a basis of its eigenvectors, is a

_diagonal matrix.

—_—

The entries along the diagonal will be the
eigenvalues.



TED=NET 2,

cw) i ]

Why" E ? U))S U j(vw 4

( T oo ) L ?@;@Mﬂ

A [ (U(1))] [f(u(z))]u [f(u(d))]u

S A

-

@) = A,a" so [f(@M)],, = (A;,0, ..., 0)". N §>\
F(@®) = 3,09, s0 [f(@)],, = (0,2, .., 0" |



Matrix Multiplication

We have seen that matrix multiplication
evaluates a linear transformation.

In the standard basis:
(%) = A%
In another basis:

if()?)]u = Au[L




Dlagonallzatlon (]2 L“ﬁéj

Another way to compute f(x) starting with x in 4U%
the standard basis: T

Change basis to the eigenbasis with U. AUI &
- PN
Apply £ in the eigenbasis with the diagonal

e AM Xlu AM (//)C

Go back to the standard basis with U'., /

That ist follows ths




Spectral Theorem (Again)

Theorem: Let A be an n x n symmetric matrix.

Then there exists anorthogonatmatrix U and a
diagonal matrix A such that A = UTAU.
=

The rows of U are the-eigenvectors of A, and the

entries of Aare its

U is said to diagonalize A.
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Dimensionality Reduction



High Dimensional Data

Data is often high dimensional (many features)

RIS R D o
Example: Netflix user
umber of movies watched
_Number of movies saved (&t: (00000

Total time watched

Number of logins

Days since signup

Average rating for comedy

Average rating for drama



High Dimensional Data
More features can give us more information
But it can also cause problems

Today: how do we reduce dimensionality without
losing too much information?



More Features, More Problems

Difficulties with high dimensional data:
Requires more compute time / space
Hard to visualize / explore
The “curse of dimensionality”: it's harder to learn



Experiment

On this data, low 80%
train/test accuracy

Add 400 features of pure
noise, re-train

", e 3083 oot Now: 100% trai cy,
e ST T e 58% test accuracy

Overfitting!



Task: Dimensionality Reduction

We'd often like to reduce the dimensionality to
improve performance, or to visualize.

We will typically lose information

Want to minimize the loss of useful information



Redundancy

Two (or more) features may share the same
information.

Intuition: we may not need all of them.



Today

Today we’ll think about reducing dimensionality
from RY to R’

Next time we'll go from R? to RY’, with d’ < d
~—" =



Today’s Example
Let's say we represent a phone with two features:
X,: screen width
x;: phone weight X:"(,%) 3(1)
Both measure a phone's “size”. i\/}

Instead of representing a phone with both x, and

X,, Can we just use a single number, z?
Reduce dimensionality from 2 to 1.




First Approach: Remove Features
Screen width and weight share information.
Idea: keep one feature, remove the other.

That is, set new feature z = x, (or z = x,).
\



~
@ w

Removing Features

Say we set z() = X" for
o each phone, i.

2O w

NO~-—~p
)

A

AV
- ©_h~

O~~~y

o~ —0

l_@ Observe: z*) > 7,

Is phone 4 really “larger’
than phone 5?

’



Removing Features

Say we set z() = X for

el .- S0 each phone, I.
r\O 7
5 6
3 10
) o-= ] , Observe: z®) > z*),

-0 /\

Ow\h 4

2

Is phone 3 really “larger”
than phone 4?




Better Approach: Mixtures of
Features

Idea: z should be a combination of x, and x,.
_—

One approach: linear combination.

. @ 9.9
Z = U1X1 + UZXZ / (00

-0 %
_

uy,..., U, are the mixture coefficients; we can
choose them.




Normalization
Mixture coefficients generalize proportions.
We could assume, e.g., |u,| + |u,| = 1.

But it makes the math easier if we assume

2,2 =
ug+u;=1.
S —

Equivalently, if & = (u,,u,)", assume |ld]| = 1



Geometric Interpretation

I\

>

” .
L/ ﬁ

Z measures how much of X
is in the direction of U

If 4 =(1,0), then z = x,

If 4 =(0,1)", then z = x,

v/



Choosing (i

Suppose we have only two features:
X,: screen size
X,: phone thickness

We'll create single new feature, z, from x, and x,.
Assume Z = U X, + U, X, = X - U
Interpretation: z is a measure of a phone’s size

How should we choose & = (uq,u,)"?



Example

S ©)
~0

A

=0

~vO

~0 [OXY

U defines a direction

Z0) = X0 . §j measures
position of X along this
direction



S ©)

~0

Example

A

=0

~vO

~0 [OXY

Phone “size” varies most
along a diagonal direction.

Along direction of “max
variance”, phones are
well-separated.

Idea: U should pointin
direction of “max
variance”.



Our Algorithm (Informally)
Given: data points X", ..., X" e RY
Pick U to be the direction of “max variance”

Create a new feature, z, for each point:

A = %0 .



PCA

This algorithm is called Principal Component
Analysis, or PCA.

The direction of maximum variance is called the
principal component.



Suppose the direction of maximum variance in a

data set is
U= (1/\/57 _1/\/5)7-

Let
X = (3,-2)7
X2 = (1,4)"

What are z" and z??




Problem

How do we compute the “direction of maximum
variance”?



