
Lecture 07 | Part 1

Change of Basis Matrices

Changing Basis

▶ Suppose ⃗𝑥 = (𝑎1𝑎2
) = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2).

▶ �̂�(1) and �̂�(2) form a new, orthonormal basis U .

▶ What is [⃗𝑥]U?

▶ That is, what are 𝑏1 and 𝑏2 in ⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2).

Exercise

Find the coordinates of ⃗𝑥 in the new basis:

�̂�(1) = (√3/2, 1/2)𝑇

�̂�(2) = (−1/2, √3/2)𝑇

⃗𝑥 = (1/2, 1)𝑇

Change of Basis

▶ Suppose �̂�(1) and �̂�(2) are our new, orthonormal
basis vectors.

▶ We know ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2)

▶ We want to write ⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2)

▶ Solution

𝑏1 = ⃗𝑥 ⋅ �̂�(1) 𝑏2 = ⃗𝑥 ⋅ �̂�(2)

Change of Basis Matrix

▶ Changing basis is a linear transformation

⃗𝑓(⃗𝑥) = (⃗𝑥 ⋅ �̂�(1))�̂�(1) + (⃗𝑥 ⋅ �̂�(2))�̂�(2) = (⃗𝑥 ⋅ �̂�
(1)

⃗𝑥 ⋅ �̂�(2))
U

▶ We can represent it with a matrix

(
↑ ↑

𝑓(̂𝑒(1)) 𝑓(̂𝑒(2))
↓ ↓

)

Example

�̂�(1) = (√3/2, 1/2)𝑇

�̂�(2) = (−1/2, √3/2)𝑇

𝑓(̂𝑒(1)) =
𝑓(̂𝑒(2)) =

𝐴 =

Observation

▶ The new basis vectors become the rows of the
matrix.

Example

▶ Multiplying by this matrix gives the coordinate
vector w.r.t. the new basis.

�̂�(1) = (√3/2, 1/2)𝑇

�̂�(2) = (−1/2, √3/2)𝑇

𝐴 = (
√3/2 1/2
−1/2 √3/2

)

⃗𝑥 = (1/2, 1)𝑇

Change of Basis Matrix

▶ Let �̂�(1), … , �̂�(𝑑) form an orthonormal basis U .

▶ The matrix 𝑈 whose rows are the new basis
vectors is the change of basis matrix from the
standard basis to U :

𝑈 = (

← �̂�(1) →
← �̂�(2) →

⋮
← �̂�(𝑑) →

)

Change of Basis Matrix

▶ If 𝑈 is the change of basis matrix, [⃗𝑥]U = 𝑈 ⃗𝑥

▶ To go back to the standard basis, use 𝑈𝑇:

⃗𝑥 = 𝑈𝑇[⃗𝑥]U

Exercise

Let 𝑈 be the change of basis matrix for U .
What is 𝑈𝑇𝑈?

Hint: What is 𝑈𝑇(𝑈 ⃗𝑥)?

Lecture 07 | Part 2

Diagonalization

Matrices of a Transformation

▶ Let ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑 be a linear transformation

▶ The matrix representing ⃗𝑓 wrt the standard basis
is:

𝐴 = (
↑ ↑ ↑ ↑
⃗𝑓(̂𝑒(1)) ⃗𝑓(̂𝑒(2)) ⋯ ⃗𝑓(̂𝑒(𝑑))
↓ ↓ ↓ ↓

)

Matrices of a Transformation

▶ If we use a different basis U = {�̂�(1), … , �̂�(𝑑)}, the
matrix representing ⃗𝑓 is:

𝐴U = (
↑ ↑ ↑ ↑

[⃗𝑓(�̂�(1))]U [⃗𝑓(�̂�(2))]U ⋯ [⃗𝑓(�̂�(𝑑))]U
↓ ↓ ↓ ↓

)

▶ If ⃗𝑦 = 𝐴 ⃗𝑥, then [⃗𝑦]U = 𝐴U [⃗𝑥]U

Diagonal Matrices

▶ Diagonal matrices are very nice / easy to work
with.

▶ Suppose 𝐴 is a matrix. Is there a basis U where
𝐴U is diagonal?

▶ Yes! If 𝐴 is symmetric.

The Spectral Theorem1

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exist 𝑛 eigenvectors of 𝐴 which are all
mutually orthogonal.

1for symmetric matrices

Eigendecomposition

▶ If 𝐴 is a symmetric matrix, we can pick 𝑑 of its
eigenvectors �̂�(1), … , �̂�(𝑑) to form an orthonormal
basis.

▶ Any vector ⃗𝑥 can be written in terms of this
eigenbasis.

▶ This is called its eigendecomposition:

⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2) + … + 𝑏𝑑�̂�(𝑑)

Matrix in the Eigenbasis

▶ Claim: the matrix of a linear transformation ⃗𝑓,
written in a basis of its eigenvectors, is a
diagonal matrix.

▶ The entries along the diagonal will be the
eigenvalues.

Why?

𝐴U = (
↑ ↑ ↑ ↑

[⃗𝑓(�̂�(1))]U [⃗𝑓(�̂�(2))]U ⋯ [⃗𝑓(�̂�(𝑑))]U
↓ ↓ ↓ ↓

)

▶ ⃗𝑓(�̂�(1)) = 𝜆1�̂�(1), so [⃗𝑓(�̂�(1))]U = (𝜆1, 0, … , 0)𝑇.
▶ ⃗𝑓(�̂�(2)) = 𝜆2�̂�(2), so [⃗𝑓(�̂�(2))]U = (0, 𝜆2, … , 0)𝑇.
▶ …

Matrix Multiplication

▶ We have seen that matrix multiplication
evaluates a linear transformation.

▶ In the standard basis:

⃗𝑓(⃗𝑥) = 𝐴 ⃗𝑥

▶ In another basis:

[⃗𝑓(⃗𝑥)]U = 𝐴U [⃗𝑥]U

Diagonalization

▶ Another way to compute ⃗𝑓(𝑥), starting with ⃗𝑥 in
the standard basis:
1. Change basis to the eigenbasis with 𝑈.

2. Apply ⃗𝑓 in the eigenbasis with the diagonal
𝐴U .

3. Go back to the standard basis with 𝑈𝑇.

▶ That is, 𝐴 ⃗𝑥 = 𝑈𝑇𝐴U𝑈 ⃗𝑥. It follows that 𝐴 = 𝑈𝑇𝐴U𝑈.

Spectral Theorem (Again)

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exists an orthogonal matrix 𝑈 and a
diagonal matrix Λ such that 𝐴 = 𝑈𝑇Λ𝑈.

▶ The rows of 𝑈 are the eigenvectors of 𝐴, and the
entries of Λ are its eigenvalues.

▶ 𝑈 is said to diagonalize 𝐴.

Lecture 07 | Part 3

Dimensionality Reduction

High Dimensional Data

▶ Data is often high dimensional (many features)

▶ Example: Netflix user
▶ Number of movies watched
▶ Number of movies saved
▶ Total time watched
▶ Number of logins
▶ Days since signup
▶ Average rating for comedy
▶ Average rating for drama
▶ ⋮

High Dimensional Data

▶ More features can give us more information

▶ But it can also cause problems

▶ Today: how do we reduce dimensionality without
losing too much information?

More Features, More Problems

▶ Difficulties with high dimensional data:
1. Requires more compute time / space
2. Hard to visualize / explore
3. The “curse of dimensionality”: it’s harder to learn

Experiment

2 1 0 1 2 3

2

1

0

1

2

3 -1
1

▶ On this data, low 80%
train/test accuracy

▶ Add 400 features of pure
noise, re-train

▶ Now: 100% train accuracy,
58% test accuracy

▶ Overfitting!

Task: Dimensionality Reduction

▶ We’d often like to reduce the dimensionality to
improve performance, or to visualize.

▶ We will typically lose information

▶ Want to minimize the loss of useful information

Redundancy

▶ Two (or more) features may share the same
information.

▶ Intuition: we may not need all of them.

Today

▶ Today we’ll think about reducing dimensionality
from ℝ𝑑 to ℝ1

▶ Next time we’ll go from ℝ𝑑 to ℝ𝑑′, with 𝑑′ ≤ 𝑑

Today’s Example

▶ Let’s say we represent a phone with two features:
▶ 𝑥1: screen width
▶ 𝑥2: phone weight

▶ Both measure a phone’s “size”.

▶ Instead of representing a phone with both 𝑥1 and
𝑥2, can we just use a single number, 𝑧?
▶ Reduce dimensionality from 2 to 1.

First Approach: Remove Features

▶ Screen width and weight share information.

▶ Idea: keep one feature, remove the other.

▶ That is, set new feature 𝑧 = 𝑥1 (or 𝑧 = 𝑥2).

Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)1 for
each phone, 𝑖.

▶ Observe: 𝑧(4) > 𝑧(5).

▶ Is phone 4 really “larger”
than phone 5?

Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)2 for
each phone, 𝑖.

▶ Observe: 𝑧(3) > 𝑧(4).

▶ Is phone 3 really “larger”
than phone 4?

Better Approach: Mixtures of
Features

▶ Idea: 𝑧 should be a combination of 𝑥1 and 𝑥2.

▶ One approach: linear combination.

𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2
= �⃗� ⋅ ⃗𝑥

▶ 𝑢1, … , 𝑢2 are the mixture coefficients; we can
choose them.

Normalization

▶ Mixture coefficients generalize proportions.

▶ We could assume, e.g., |𝑢1| + |𝑢2| = 1.

▶ But it makes the math easier if we assume
𝑢21 + 𝑢22 = 1.

▶ Equivalently, if �⃗� = (𝑢1, 𝑢2)𝑇, assume ‖�⃗�‖ = 1

Geometric Interpretation

▶ 𝑧 measures how much of ⃗𝑥
is in the direction of �⃗�

▶ If �⃗� = (1, 0)𝑇, then 𝑧 = 𝑥1

▶ If �⃗� = (0, 1)𝑇, then 𝑧 = 𝑥2

Choosing �⃗�

▶ Suppose we have only two features:
▶ 𝑥1: screen size
▶ 𝑥2: phone thickness

▶ We’ll create single new feature, 𝑧, from 𝑥1 and 𝑥2.
▶ Assume 𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2 = ⃗𝑥 ⋅ �⃗�
▶ Interpretation: 𝑧 is a measure of a phone’s size

▶ How should we choose �⃗� = (𝑢1, 𝑢2)𝑇?

Visualization
http://dsc140b.com/static/vis/pca-max_variance/

http://dsc140b.com/static/vis/pca-max_variance/

Example

▶ �⃗� defines a direction

▶ ⃗𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� measures
position of ⃗𝑥 along this
direction

Example

▶ Phone “size” varies most
along a diagonal direction.

▶ Along direction of “max
variance”, phones are
well-separated.

▶ Idea: �⃗� should point in
direction of “max
variance”.

Our Algorithm (Informally)

▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

▶ Pick �⃗� to be the direction of “max variance”

▶ Create a new feature, 𝑧, for each point:

𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗�

PCA

▶ This algorithm is called Principal Component
Analysis, or PCA.

▶ The direction of maximum variance is called the
principal component.

Exercise

Suppose the direction of maximum variance in a
data set is

�⃗� = (1/√2, −1/√2)𝑇

Let
▶ ⃗𝑥(1) = (3, −2)𝑇
▶ ⃗𝑥(2) = (1, 4)𝑇

What are 𝑧(1) and 𝑧(2)?

Problem

▶ How do we compute the “direction of maximum
variance”?

