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Dimensionality Reduction



High Dimensional Data
Data is often high dimensional (many features)

Example: Netflix user
Number of movies watched
Number of movies saved
Total time watched
Number of logins
Days since signup
Average rating for comedy
Average rating for drama



High Dimensional Data
More features can give us more information
But it can also cause problems

Today: how do we reduce dimensionality without
losing too much information?



More Features, More Problems

Difficulties with high dimensional data:
Requires more compute time / space
Hard to visualize / explore
The “curse of dimensionality”: it's harder to learn
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Experiment

On this data, low 80%
train/test accuracy

Add 400 features of pure
noise, re-train

Now: 100% train accuracy,
58% test accuracy

Overfitting!



Task: Dimensionality Reduction

We'd often like to reduce the dimensionality to
improve performance, or to visualize.

We will typically lose information

Want to minimize the loss of useful information



Redundancy

Two (or more) features may share the same
information.

Intuition: we may not need all of them.



Today

Today we'll think about reducmg dimensionality

from RY to R’
D

Next time we'll go from R? to RY’, with d’ < d



Today’s Example

Let's say we represent a phone with two features:
X,: screen width
X,: phone weight

Both measure a phone's “size”.

Instead of representing a phone with both x, and

X,, Can we just use a single number,
Reduce dimensionality from 2 to 1.



First Approach: Remove Features
Screen width and weight share information.
Idea: keep one feature, remove the other.

That is, set new feature z = x, (or z = x,).
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Removing Features

.0

—

Neo . |

NO T

bG:‘OU‘

Say we set z() = X" for
each phong,T.

Observe: z*) > 703,

Is phone 4 really “larger”
than phone 5?
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Removing Features
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Say we set z() = X for
each phone, i.

Observe: 203 > z(4),

Is phone 3 really “larger”
than phone 4?



Better Approach: Mixtures of
Features

Idea: z should be a combination of x; and x,.

One approach: WOH. .
= (U, U-)

Z=UXq +UyXy S
U X ZCXHXZ/>

— J
u-X

Uq,..., U, are the mixture coefficients; we can
choose them.



K.m‘l\\f\\ }\%v ii@ . .
S >(L*®J/ ormalization
R —

Mixture coefficients generalize proportions.
We could assume, e.g., |u,| + |u,| = 1.

But it makes the math easier if we assume
uirus =1 ()] = 7L, =

Equivalently, if & = (u,,u,)", assume ||d] = 1

XL
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Geometric Interpretation

Z measures how much of X
is in the direction of U

If 4 =(1,0), then z = x,
== %(5)=¥
If 4 =(0,1)", then z = x,

BQE'( )7 %



Choosing (i

Suppose we have only two features:
X,: screen size
X,: phone thickness

We'll create single new feature, z, from x, and x,.
Assume Z = U X, + U, X, = X - U
Interpretation: z is a measure of a phone’s size

How should we choose & = (uq,u,)"?




Example
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U defines a direction

Z0) = X0 . §j measures
position of X along this
direction



Example

A

Phone “size” varies most
along a diagonal direction.

Along direction of “max
. ” A

Y phones are

well-separated.

Idea: U shouid point in
direction of “max
variance”. —TT——




Our Algorithm (Informally)
Given: data points X", ..., X" e RY

Pick U to be the direction of “max variance”

Create a new feature, z, for each point:

A = %0 .




PCA

This algorithm is called Principal Component
Analysis, or PCA.

The direction of maximum variance is called the
principal component.




Suppose the direction of maximum variance in a

data set is

Let (1 e
X2 = (1,4)" =3 ( VJE -
What are z" and z(?? =l
3 2.



Problem

compute the “direction of maximum
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Covariance Matrices
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We know how to compute the variance of a set of

numbers X = {x{1) ... x(M1
1 n
Var(X Z - 1)?
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The variance measures the “spread” of the data



Generalizing Variance

If we have two features, x; and x,, we can
compute the variance of each as usual:

Can also measure how x, and x, vary together.




Measuring Simil formation

Features which share information if they vary

together.
Ak.a., they “co-vary”
\,

Positive association: when one is above average,
so Is the other

Negative association: when one is above
average, the other is below average



Hea
/T

.+ Examples —

|

Positive: temperature and ice cream cones sold.

Positive: temperature and shark attack
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Negative: temperature and coats sold.?\
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Centering

First, it will be useful to center the data.

A

A

L

\
x




Centering

Compute the mean of each feature: 0/
1 n
a2 3 Ay

Define new centered data:
30 _

(i) 1
_)l

S Xy -
20 =% ~H

—

;

>( _“d

&3



Centering (Equivalently)

Compute the mean of all data points:
15 %0
- _ vi{
o= Z X0
Define new centered data:

L

20 = 30 -y



Center the data set:
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Q\?'ant ing Co-Variance
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One approach is as follo

Cov(x;, ,)— Zz“ (k)
\Aﬁé‘

For each data point, multiply the value of feature i
and feature j, then average these products.

This is the covariance of features i and j.

TAssuming centered data



Quantifying Covariance

Assume the data are -

3
centered. Q
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Quantifying Covariance
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Assume the data are
centered.

15400, 30
Covariance 721 1 XXy < Q
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Quantifying Covariance

Assume the data are 57%\”\@
centered. — ,
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Covariance = ;Z)?g') x X9 0 Lj?o >0




Quantifying Covariance

The covariance quantifies extent to which two
variables vary together.

Assume we have centered the data.
The sample covariance of feature i and j is:
1< T
(B3
I ﬁ Z

k=1
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Covariance Matrices
Given data x(), ..., X" e RY,

The sample covariance matrix Cis the d xd

matrix whose ij entry is defined to be oj;.



Observations

Diagonal entries of C are the variances.

The matrix is symmetric!



Note

Sometimes you'll see the sample covariance defined as:

1 < ko

% =5 q Z %%}

k=1

Note the 1/(n - 1)
This is an unbiased estimator of the population covariance.
Our definition is the maximum likelihood estimator.
In practice, it doesn’t matter: 1/(n-1) = 1/n.
For consistency, in this class use 1/n.



Computing Covariance

There is a “trick” for computing sample
covariance matrices.

Step 1: make n x d data matrix, X
Step 2: make Z by centering columns of X

Step3: C= 1272



Computing Covariance (in code)’

»> mu = X.mean(axis=0)
»> 7 X - mu
»> C 1/ len(X) = Z.T @ Z

20r use np.cov
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Visualizing Covariance Matrices



Visualizing Covariance Matrices

Covariance matrices are symmetric.

They have axes of symmetry (eigenvectors and
eigenvalues).

What are they?



Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices

_________ S s Eigenvectors:
e T .
T &S i ~
/TN @




Visualizing Covariance Matrices




Visualizing Covariance Matrices

% Eigenvectors:




Intuitions

The eigenvectors of the covariance matrix

describe the data’s “principal directions”
C tells us something about data’s shape.

The top eigenvector points in the direction of
“maximum variance”.

The top eigenvalue is proportional to the
variance in this direction.



Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.




Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.




