DSC 1408 Representation Learning

Lecture 08 | Part 1

Dimensionality Reduction

High Dimensional Data

- Data is often high dimensional (many features)
- Example: Netflix user
 - Number of movies watched
 - Number of movies saved
 - Total time watched
 - Number of logins
 - Days since signup
 - Average rating for comedy
 - Average rating for drama

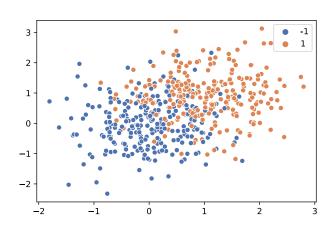
High Dimensional Data

- More features can give us more information
- But it can also cause problems
- ► **Today**: how do we reduce dimensionality without losing too much information?

More Features, More Problems

- Difficulties with high dimensional data:
 - 1. Requires more compute time / space
 - 2. Hard to visualize / explore
 - 3. The "curse of dimensionality": it's harder to learn

Experiment



- On this data, low 80% train/test accuracy
- Add 400 features of pure noise, re-train
- Now: 100% train accuracy,58% test accuracy
- Overfitting!

Task: Dimensionality Reduction

- ► We'd often like to **reduce** the dimensionality to improve performance, or to visualize.
- We will typically lose information
- Want to minimize the loss of useful information

Redundancy

Two (or more) features may share the same information.

Intuition: we may not need all of them.

Today

- Today we'll think about reducing dimensionality from \mathbb{R}^d to \mathbb{R}^1
- Next time we'll go from \mathbb{R}^d to $\mathbb{R}^{d'}$, with $d' \leq d$

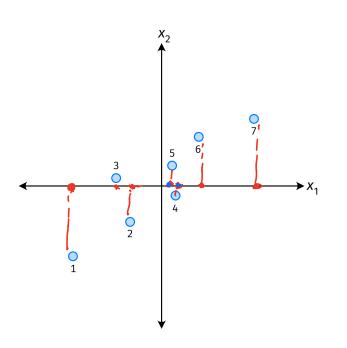
Today's Example

- Let's say we represent a phone with two features:
 - \triangleright x_1 : screen width
 - \triangleright x_2 : phone weight
- Both measure a phone's "size".
- Instead of representing a phone with both x_1 and x_2 , can we just use a single number, z?
 - ► Reduce dimensionality from 2 to 1.

First Approach: Remove Features

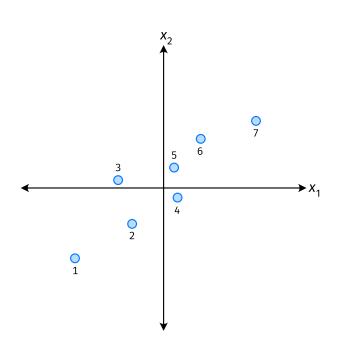
- Screen width and weight share information.
- ▶ **Idea:** keep one feature, remove the other.
- ► That is, set new feature $z = x_1$ (or $z = x_2$).

Removing Features



- Say we set $z^{(i)} = \vec{x}_1^{(i)}$ for each phone, *i*.
- Observe: $z^{(4)} > z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features



- Say we set $z^{(i)} = \vec{x}_2^{(i)}$ for each phone, *i*.
- Observe: $z^{(3)} > z^{(4)}$.
- Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

- ▶ **Idea**: z should be a combination of x_1 and x_2 .
- One approach: linear combination.

$$z = u_1 x_1 + u_2 x_2$$

$$= \vec{u} \cdot \vec{x}$$

$$\vec{\lambda} = (u_1 u_2)$$

$$\vec{\lambda} = (X_1 X_2)$$

 $u_1, ..., u_2$ are the mixture coefficients; we can choose them.

1000 X 1 TO TO THE SEE Mormalization

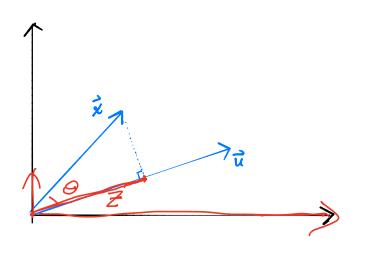
- Mixture coefficients generalize proportions.
- \triangleright We could assume, e.g., $|u_1| + |u_2| = 1$.

But it makes the math easier if we assume
$$u_1^2 + u_2^2 = 1$$
. $||u|| = \int u_1^2 + u_2^2 = 1$

► Equivalently, if $\vec{u} = (u_1, u_2)^T$, assume $||\vec{u}|| = 1$

7=X·U= ||X||:||Was0

Geometric Interpretation

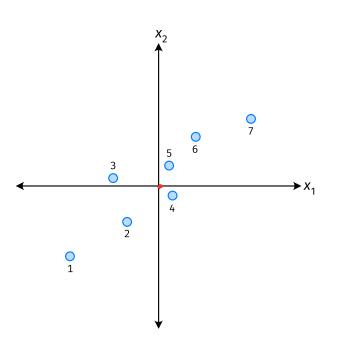


z measures how much of \vec{x} is in the direction of \vec{u}

Choosing \vec{u}

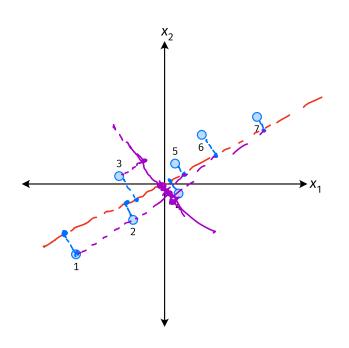
- Suppose we have only two features:
 - \triangleright x_1 : screen size
 - \triangleright x_2 : phone thickness
- \triangleright We'll create single new feature, z, from x_1 and x_2 .
 - ► Assume $z = u_1 x_1 + u_2 x_2 = \vec{x} \cdot \vec{u}$
 - ► Interpretation: z is a measure of a phone's size
- ► How should we choose $\vec{u} = (u_1, u_2)^T$?

Example



- \vec{u} defines a direction
- $\vec{z}^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example



- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- Idea: \vec{u} should point in direction of "max variance".

Our Algorithm (Informally)

- ▶ **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- ightharpoonup Pick \vec{u} to be the direction of "max variance"
- Create a new feature, z, for each point:

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$

PCA

- ► This algorithm is called **Principal Component Analysis**, or **PCA**.
- The direction of maximum variance is called the principal component.

Exercise

Suppose the direction of maximum variance in a data set is

$$\vec{x}^{(1)} = (3, -2)^T$$

 $\vec{x}^{(2)} = (1, 4)^T$

$$\vec{x}^{(2)} = (1,4)^T$$

What are $z^{(1)}$ and $z^{(2)}$?

Problem

How do we compute the "direction of maximum variance"?

DSC 1408 Representation Learning

Lecture 08 | Part 2

Covariance Matrices

M: mean $= \underbrace{r}_{n} \times (i)$

Variance

We know how to compute the variance of a set of numbers $X = \{x^{(1)}, ..., x^{(n)}\}$:

Var(X) =
$$\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$$

The variance measures the "spread" of the data

Generalizing Variance

If we have two features, x_1 and x_2 , we can compute the variance of each as usual:

$$Var(x_1) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_1^{(i)} - \mu_1)^2$$

$$Var(x_2) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_2^{(i)} - \mu_2)^2$$

 \triangleright Can also measure how x_1 and x_2 vary together.

Measuring Similar Information

- Features which share information if they vary together.
 - A.k.a., they <u>"co-vary"</u>
- Positive association: when one is above average, so is the other

Negative association: when one is above average, the other is below average Examples #Sa

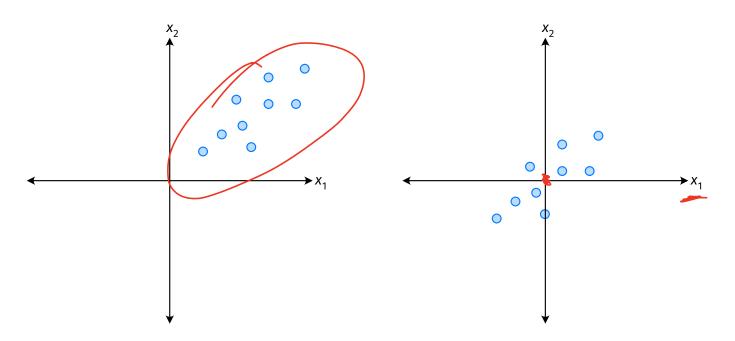
Positive: temperature and ice cream cones sold.

Positive: temperature and shark attacks

Negative: temperature and coats sold.

Centering

First, it will be useful to **center** the data.



Centering

Compute the mean of each feature:

$$\mu_j = \frac{1}{n} \sum_{1}^{n} \vec{x}_j^{(i)} \qquad \mathcal{M}_i \quad \mathcal{M}_z - \mathcal{M}_j - \mathcal{M}_d$$

Define new centered data:

$$\vec{z}^{(i)} = \begin{pmatrix} \vec{x}_1^{(i)} - \mu_1 \\ \vec{x}_2^{(i)} - \mu_2 \\ \vdots \\ \vec{x}_d^{(i)} - \mu_d \end{pmatrix}$$

Centering (Equivalently)

Compute the mean of all data points:

$$\mu = \frac{1}{n} \sum_{1}^{n} \vec{\mathbf{x}}^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \vec{x}^{(i)} - \mu$$

Exercise

Center the data set:

set:
$$\vec{x}^{(1)} = (1, 2, 3)^T$$
 $\vec{x}^{(2)} = (-1, -1, 0)^T$ $\vec{x}^{(3)} = (0, 2, 3)^T$

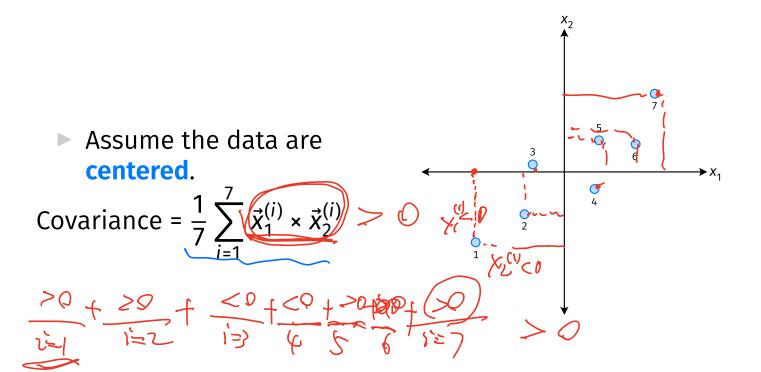
$$\vec{L} = \frac{\vec{x}(1) + \vec{x}(2) + \vec{x}(2)}{3} = (0, 1, 2)^{T}$$

One approach is as follows

Cov(x_i, x_j) =
$$\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

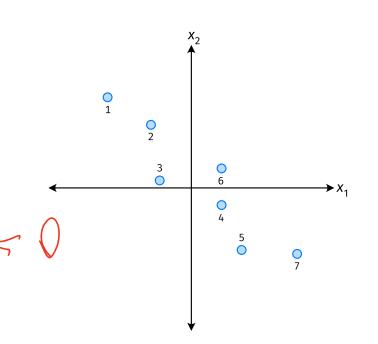
- For each data point, multiply the value of feature i and feature i, then average these products.
- This is the **covariance** of features *i* and *j*.

¹Assuming centered data



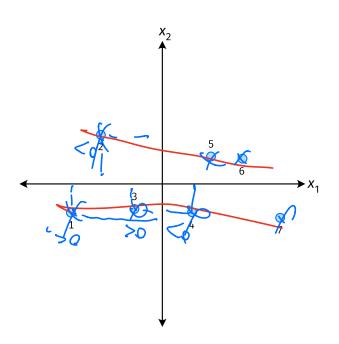
Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_1^{(i)} \times \vec{x}_2^{(i)} \approx 0$$



- ► The **covariance** quantifies extent to which two variables vary together.
- Assume we have centered the data.
- ightharpoonup The **sample covariance** of feature *i* and *j* is:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^n \vec{X}_i^{(k)} \vec{X}_j^{(k)}$$

Exercise

True or False: $\sigma_{ij} = \sigma_{ji}$?

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Covariance Matrices

- ► Given data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$.
- ► The sample covariance matrix C is the $d \times d$ matrix whose ij entry is defined to be σ_{ii} .

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Observations

- Diagonal entries of C are the variances.
- ► The matrix is **symmetric**!

Note

Sometimes you'll see the sample covariance defined as:

$$\sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \vec{X}_{i}^{(k)} \vec{X}_{j}^{(k)}$$

Note the 1/(n-1)

- This is an unbiased estimator of the population covariance.
- Our definition is the maximum likelihood estimator.
- ► In practice, it doesn't matter: $1/(n-1) \approx 1/n$.
- For consistency, in this class use 1/n.

Computing Covariance

► There is a "trick" for computing sample covariance matrices.

- ► Step 1: make $n \times d$ data matrix, X
- Step 2: make Z by centering columns of X
- $\triangleright \text{ Step 3: } C = \frac{1}{n}Z^TZ$

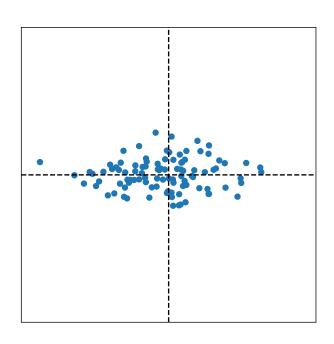
Computing Covariance (in code)²

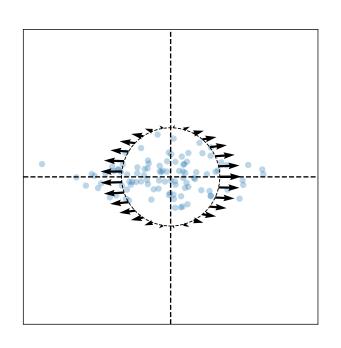
```
>>> mu = X.mean(axis=0)
>>> Z = X - mu
>>> C = 1 / len(X) * Z.T @ Z
```


Lecture 08 | Part 3

- Covariance matrices are symmetric.
- They have axes of symmetry (eigenvectors and eigenvalues).

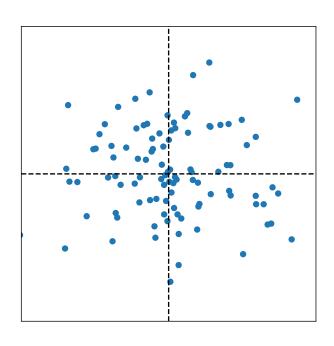
What are they?



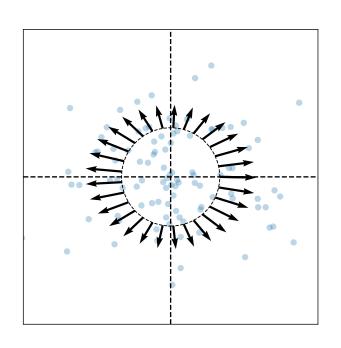


Eigenvectors:

$$\vec{u}^{(1)}\approx$$

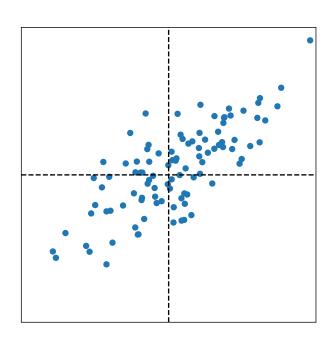


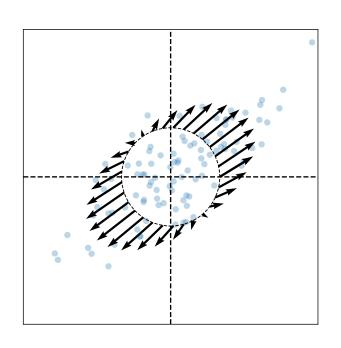
$$C \approx \left(\right)$$



Eigenvectors:

$$\vec{u}^{(1)} \approx$$





Eigenvectors:

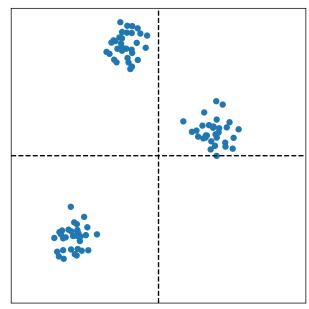
$$\vec{u}^{(1)} \approx$$

Intuitions

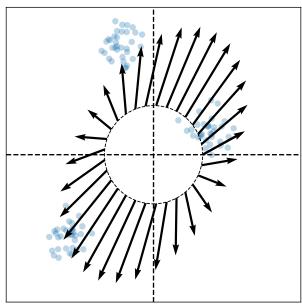
- ► The **eigenvectors** of the covariance matrix describe the data's "principal directions"
 - C tells us something about data's shape.
- ► The **top eigenvector** points in the direction of "maximum variance".

► The **top eigenvalue** is proportional to the variance in this direction.

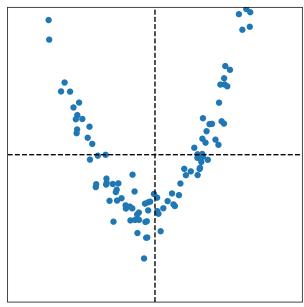
- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.

