
Lecture 08 | Part 1

Dimensionality Reduction

High Dimensional Data

▶ Data is often high dimensional (many features)

▶ Example: Netflix user
▶ Number of movies watched
▶ Number of movies saved
▶ Total time watched
▶ Number of logins
▶ Days since signup
▶ Average rating for comedy
▶ Average rating for drama
▶ ⋮

High Dimensional Data

▶ More features can give us more information

▶ But it can also cause problems

▶ Today: how do we reduce dimensionality without
losing too much information?

More Features, More Problems

▶ Difficulties with high dimensional data:
1. Requires more compute time / space
2. Hard to visualize / explore
3. The “curse of dimensionality”: it’s harder to learn

Experiment

2 1 0 1 2 3

2

1

0

1

2

3 -1
1

▶ On this data, low 80%
train/test accuracy

▶ Add 400 features of pure
noise, re-train

▶ Now: 100% train accuracy,
58% test accuracy

▶ Overfitting!

Task: Dimensionality Reduction

▶ We’d often like to reduce the dimensionality to
improve performance, or to visualize.

▶ We will typically lose information

▶ Want to minimize the loss of useful information

Redundancy

▶ Two (or more) features may share the same
information.

▶ Intuition: we may not need all of them.

Today

▶ Today we’ll think about reducing dimensionality
from ℝ𝑑 to ℝ1

▶ Next time we’ll go from ℝ𝑑 to ℝ𝑑′, with 𝑑′ ≤ 𝑑

Today’s Example

▶ Let’s say we represent a phone with two features:
▶ 𝑥1: screen width
▶ 𝑥2: phone weight

▶ Both measure a phone’s “size”.

▶ Instead of representing a phone with both 𝑥1 and
𝑥2, can we just use a single number, 𝑧?
▶ Reduce dimensionality from 2 to 1.

First Approach: Remove Features

▶ Screen width and weight share information.

▶ Idea: keep one feature, remove the other.

▶ That is, set new feature 𝑧 = 𝑥1 (or 𝑧 = 𝑥2).

Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)1 for
each phone, 𝑖.

▶ Observe: 𝑧(4) > 𝑧(5).

▶ Is phone 4 really “larger”
than phone 5?

Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)2 for
each phone, 𝑖.

▶ Observe: 𝑧(3) > 𝑧(4).

▶ Is phone 3 really “larger”
than phone 4?

Better Approach: Mixtures of
Features

▶ Idea: 𝑧 should be a combination of 𝑥1 and 𝑥2.

▶ One approach: linear combination.

𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2
= �⃗� ⋅ ⃗𝑥

▶ 𝑢1, … , 𝑢2 are the mixture coefficients; we can
choose them.

Normalization

▶ Mixture coefficients generalize proportions.

▶ We could assume, e.g., |𝑢1| + |𝑢2| = 1.

▶ But it makes the math easier if we assume
𝑢21 + 𝑢22 = 1.

▶ Equivalently, if �⃗� = (𝑢1, 𝑢2)𝑇, assume ‖�⃗�‖ = 1

Geometric Interpretation

▶ 𝑧 measures how much of ⃗𝑥
is in the direction of �⃗�

▶ If �⃗� = (1, 0)𝑇, then 𝑧 = 𝑥1

▶ If �⃗� = (0, 1)𝑇, then 𝑧 = 𝑥2

Choosing �⃗�

▶ Suppose we have only two features:
▶ 𝑥1: screen size
▶ 𝑥2: phone thickness

▶ We’ll create single new feature, 𝑧, from 𝑥1 and 𝑥2.
▶ Assume 𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2 = ⃗𝑥 ⋅ �⃗�
▶ Interpretation: 𝑧 is a measure of a phone’s size

▶ How should we choose �⃗� = (𝑢1, 𝑢2)𝑇?

Visualization
http://dsc140b.com/static/vis/pca-max_variance/

http://dsc140b.com/static/vis/pca-max_variance/

Example

▶ �⃗� defines a direction

▶ ⃗𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� measures
position of ⃗𝑥 along this
direction

Example

▶ Phone “size” varies most
along a diagonal direction.

▶ Along direction of “max
variance”, phones are
well-separated.

▶ Idea: �⃗� should point in
direction of “max
variance”.

Our Algorithm (Informally)

▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

▶ Pick �⃗� to be the direction of “max variance”

▶ Create a new feature, 𝑧, for each point:

𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗�

PCA

▶ This algorithm is called Principal Component
Analysis, or PCA.

▶ The direction of maximum variance is called the
principal component.

Exercise

Suppose the direction of maximum variance in a
data set is

�⃗� = (1/√2, −1/√2)𝑇

Let
▶ ⃗𝑥(1) = (3, −2)𝑇
▶ ⃗𝑥(2) = (1, 4)𝑇

What are 𝑧(1) and 𝑧(2)?

Problem

▶ How do we compute the “direction of maximum
variance”?

Lecture 08 | Part 2

Covariance Matrices

Variance

▶ We know how to compute the variance of a set of
numbers 𝑋 = {𝑥(1), … , 𝑥(𝑛)}:

Var(𝑋) = 1𝑛

𝑛

∑
𝑖=1
(𝑥(𝑖) − 𝜇)2

▶ The variance measures the “spread” of the data

Generalizing Variance
▶ If we have two features, 𝑥1 and 𝑥2, we can
compute the variance of each as usual:

Var(𝑥1) =
1
𝑛

𝑛

∑
𝑖=1
(⃗𝑥(𝑖)1 − 𝜇1)2

Var(𝑥2) =
1
𝑛

𝑛

∑
𝑖=1
(⃗𝑥(𝑖)2 − 𝜇2)2

▶ Can also measure how 𝑥1 and 𝑥2 vary together.

Measuring Similar Information

▶ Features which share information if they vary
together.
▶ A.k.a., they “co-vary”

▶ Positive association: when one is above average,
so is the other

▶ Negative association: when one is above
average, the other is below average

Examples

▶ Positive: temperature and ice cream cones sold.

▶ Positive: temperature and shark attacks.

▶ Negative: temperature and coats sold.

Centering
▶ First, it will be useful to center the data.

Centering
▶ Compute the mean of each feature:

𝜇𝑗 =
1
𝑛

𝑛

∑
1

⃗𝑥(𝑖)𝑗

▶ Define new centered data:

⃗𝑧(𝑖) = (

⃗𝑥(𝑖)1 − 𝜇1
⃗𝑥(𝑖)2 − 𝜇2

⋮
⃗𝑥(𝑖)𝑑 − 𝜇𝑑

)

Centering (Equivalently)

▶ Compute the mean of all data points:

𝜇 = 1𝑛

𝑛

∑
1

⃗𝑥(𝑖)

▶ Define new centered data:

⃗𝑧(𝑖) = ⃗𝑥(𝑖) − 𝜇

Exercise

Center the data set:

⃗𝑥(1) = (1, 2, 3)𝑇

⃗𝑥(2) = (−1, −1, 0)𝑇

⃗𝑥(3) = (0, 2, 3)𝑇

Quantifying Co-Variance

▶ One approach is as follows1.

Cov(𝑥𝑖, 𝑥𝑗) =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

▶ For each data point, multiply the value of feature 𝑖
and feature 𝑗, then average these products.

▶ This is the covariance of features 𝑖 and 𝑗.

1Assuming centered data

Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17

7

∑
𝑖=1

⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2

Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17

7

∑
𝑖=1

⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2

Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17

7

∑
𝑖=1

⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2

Quantifying Covariance

▶ The covariance quantifies extent to which two
variables vary together.

▶ Assume we have centered the data.

▶ The sample covariance of feature 𝑖 and 𝑗 is:

𝜎𝑖𝑗 =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

Exercise

True or False: 𝜎𝑖𝑗 = 𝜎𝑗𝑖?

𝜎𝑖𝑗 =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

Covariance Matrices

▶ Given data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑.

▶ The sample covariance matrix 𝐶 is the 𝑑 × 𝑑
matrix whose 𝑖𝑗 entry is defined to be 𝜎𝑖𝑗.

𝜎𝑖𝑗 =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

Observations

▶ Diagonal entries of 𝐶 are the variances.

▶ The matrix is symmetric!

Note
▶ Sometimes you’ll see the sample covariance defined as:

𝜎𝑖𝑗 =
1

𝑛 − 1

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

Note the 1/(𝑛 − 1)
▶ This is an unbiased estimator of the population covariance.
▶ Our definition is the maximum likelihood estimator.
▶ In practice, it doesn’t matter: 1/(𝑛 − 1) ≈ 1/𝑛.
▶ For consistency, in this class use 1/𝑛.

Computing Covariance

▶ There is a “trick” for computing sample
covariance matrices.

▶ Step 1: make 𝑛 × 𝑑 data matrix, 𝑋

▶ Step 2: make 𝑍 by centering columns of 𝑋

▶ Step 3: 𝐶 = 1
𝑛𝑍𝑇𝑍

Computing Covariance (in code)2

»> mu = X.mean(axis=0)
»> Z = X - mu
»> C = 1 / len(X) * Z.T @ Z

2Or use np.cov

Lecture 08 | Part 3

Visualizing Covariance Matrices

Visualizing Covariance Matrices

▶ Covariance matrices are symmetric.

▶ They have axes of symmetry (eigenvectors and
eigenvalues).

▶ What are they?

Visualizing Covariance Matrices

𝐶 ≈ ()

Visualizing Covariance Matrices

Eigenvectors:

�⃗�(1) ≈
�⃗�(2) ≈

Visualizing Covariance Matrices

𝐶 ≈ ()

Visualizing Covariance Matrices

Eigenvectors:

�⃗�(1) ≈
�⃗�(2) ≈

Visualizing Covariance Matrices

𝐶 ≈ ()

Visualizing Covariance Matrices

Eigenvectors:

�⃗�(1) ≈
�⃗�(2) ≈

Intuitions

▶ The eigenvectors of the covariance matrix
describe the data’s “principal directions”
▶ 𝐶 tells us something about data’s shape.

▶ The top eigenvector points in the direction of
“maximum variance”.

▶ The top eigenvalue is proportional to the
variance in this direction.

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.

