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Lecture 09 Part 1

Covariance Matrices



Variance

We know how to compute the variance of a set of
numbers X = {x{V), ..., x("}:

1 n
Var(X ﬁ;

The variance measures the “spread” of the data



Generalizing Variance

If we have two features, x; and x,, we can
compute the variance of each as usual:
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Can also measure how x, and x, vary together.



Measuring Similar Information

Features which share information if they vary

together.
Ak.a., they “co-vary”

Positive association: when one is above average,
so Is the other

Negative association: when one is above
average, the other is below average



Examples
Positive: temperature and ice cream cones sold.
Positive: temperature and shark attacks.

Negative: temperature and coats sold.



Centering

First, it will be useful to center the data.
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Centering

Compute the mean of each feature:

Define new centered data:
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Centering (Equivalently)

Compute the mean of all data points:
1<C 5
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Define new centered data:
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Center the data set:




Quantifying Co-Variance

One approach is as follows'.

1 < (k) (k
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For each data point, multiply the value of feature i
and feature j, then average these products.

This is the covariance of features i and j.

TAssuming centered data



Quantifying Covariance

Assume the data are ° o
centered.
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Quantifying Covariance
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Assume the data are
centered.
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Quantifying Covariance
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Assume the data are
centered.
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Quantifying Covariance

The covariance quantifies extent to which two
variables vary together.

Assume we have centered the data.

The sample covariance of feature i and j is:
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Given data X ),..., x(") e RY,

The sample covariance matrix Cis the d x d
matrix whose ij entry is defined to be oj;.
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Observations

Diagonal entries of C are the variances.

The matrix is symmetric!
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Note

Sometimes you'll see the sample covariance defined as:

Note the 1/(n - 1)
This is an unbiased estimator of the population covariance.
Our definition is the maximum likelihood estimator.

In practice, it doesn’t matter: 1/(n-1)=1/n.

For consistency, in this class Use 1/n.
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There is a “trick” for computing sample %, CR”/
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covariance matrices. D

rv _X
Step 1: make n x d data matrix, X

Step 2: make Z by centerlng c/l__rnnggﬂ(
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Computing Covariance (in code)’

»> mu = X.mean(axis=0)

»> /Z = X - mu

»> C =1/ len(X) = Z.T @ Z
s q
n 27
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Visualizing Covariance Matrices



Visualizing Covariance Matrices
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Covariance matrices are symmetric. J

They have axes of symmetry (eigenvectors and
eigenvalues).

What are they?



Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices




Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Eigenvectors:




Intuitions
The g_igg\ée\c;cj;:.;of the covariance matrix
describe the s “principal directions”
grtells us something about data’s shape.

The top eigenvector points in the direction of
“maximum variance”.

The top eigenvalue is proportional to the
variance in this direction.



Caution

The data doesn’t always look like this. C
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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PCA, More Formally



The Story (So Far)

We want to create a single new feature, z.

Our idea: z = X - U; choose U to point in the
“direction of maximum variance”.

Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.



More Formally...

We haven’t actually defined “direction of
maximum variance”

Let’s derive PCA more formally.



Variance in a Direction
Let U be a unit vector.
Z0) = X0) . {1 is the new feature for x\).

The variance of the new features is:

Var(z) =



Example
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Note

If the data are centered, then py, = 0 and the
variance of the new features is:
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Var(z) =



Goal

The variance of a data set in the direction of U is:

(i) = > (%0 )’

i=1

Our goal: Find a unit vector t which maximizes g.



Claim



Our Goal (Again)

Find a unit vector & which maximizes t'Cd.



Claim

To maximize U'Cii over unit vectors, choose i to
be the top eigenvector of C.

Proof:



PCA (for a single new feature)
Given: data points (", ..., X" e RY
Compute the covariance matrix, C.

Compute the top eigenvector i, of C.

Fori €{1,...,n}, create new feature:
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A Parting Example
MNIST: 60,000 images in 784 dimensions
Principal component: i € R’8*

We can project an image in R’8* onto il to get a
single number representing the image



Example
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