DSC 1408 Representation Learning

Lecture 10 | Part 1

Covariance Matrices

Variance

We know how to compute the variance of a set of numbers $X = \{x^{(1)}, ..., x^{(n)}\}$:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$$

The variance measures the "spread" of the data

Generalizing Variance

If we have two features, x_1 and x_2 , we can compute the variance of each as usual:

$$Var(x_1) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_1^{(i)} - \mu_1)^2$$

$$Var(x_2) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_2^{(i)} - \mu_2)^2$$

 \triangleright Can also measure how x_1 and x_2 vary together.

Measuring Similar Information

- Features which share information if they vary together.
 - A.k.a., they "co-vary"
- Positive association: when one is above average, so is the other

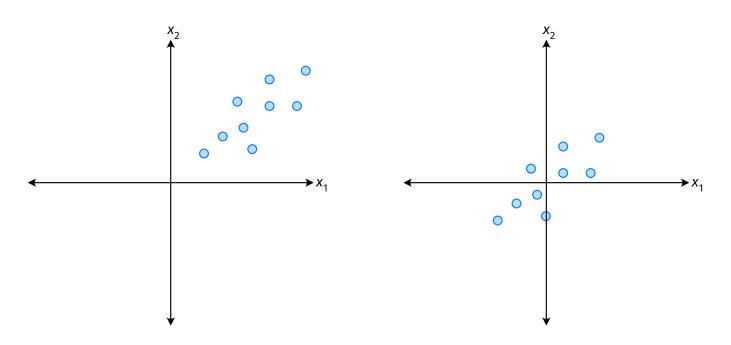
Negative association: when one is above average, the other is below average

Examples

- Positive: temperature and ice cream cones sold.
- Positive: temperature and shark attacks.
- Negative: temperature and coats sold.

Centering

First, it will be useful to **center** the data.



Centering

Compute the mean of each feature:

$$\mu_j = \frac{1}{n} \sum_{1}^{n} \vec{x}_j^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \begin{pmatrix} \vec{x}_1^{(i)} - \mu_1 \\ \vec{x}_2^{(i)} - \mu_2 \\ \vdots \\ \vec{x}_d^{(i)} - \mu_d \end{pmatrix}$$

Centering (Equivalently)

Compute the mean of all data points:

$$\mu = \frac{1}{n} \sum_{1}^{n} \vec{x}^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \vec{x}^{(i)} - \mu$$

Exercise

Center the data set:

$$\vec{x}^{(1)} = (1, 2, 3)^T$$

$$\vec{x}^{(2)} = (-1, -1, 0)^T$$

$$\vec{x}^{(3)} = (0, 2, 3)^T$$

► One approach is as follows¹.

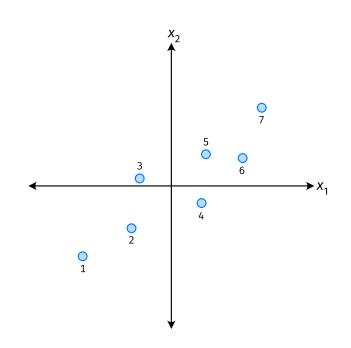
Cov
$$(x_i, x_j) = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

- For each data point, multiply the value of feature *i* and feature *j*, then average these products.
- This is the **covariance** of features *i* and *j*.

¹Assuming centered data

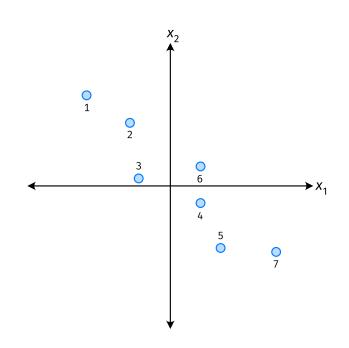
Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



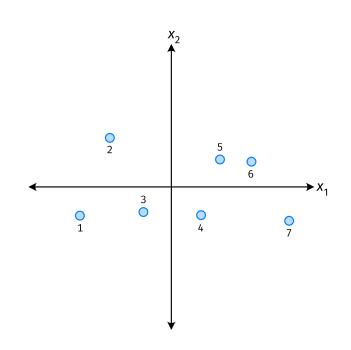
Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



- ► The **covariance** quantifies extent to which two variables vary together.
- Assume we have centered the data.
- ightharpoonup The sample covariance of feature *i* and *j* is:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Exercise

True or False: $\sigma_{ij} = \sigma_{ji}$?

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Covariance Matrices

- ► Given data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$.
- ► The sample covariance matrix C is the $d \times d$ matrix whose ij entry is defined to be σ_{ii} .

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Observations

- Diagonal entries of C are the variances.
- ► The matrix is **symmetric**!

Note

Sometimes you'll see the sample covariance defined as:

$$\sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \vec{X}_{i}^{(k)} \vec{X}_{j}^{(k)}$$

Note the 1/(n-1)

- This is an **unbiased** estimator of the population covariance.
- Our definition is the maximum likelihood estimator.
- ► In practice, it doesn't matter: $1/(n-1) \approx 1/n$.
- For consistency, in this class use 1/n.

Computing Covariance

► There is a "trick" for computing sample covariance matrices.

- \triangleright Step 1: make $n \times d$ data matrix, X
- Step 2: make Z by centering columns of X
- $\triangleright \text{ Step 3: } C = \frac{1}{n}Z^TZ$

Computing Covariance (in code)²

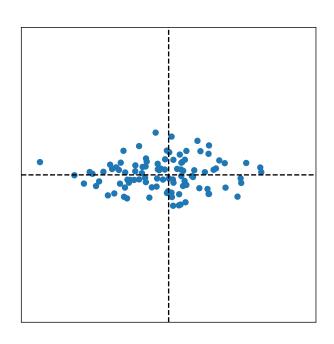
```
>>> mu = X.mean(axis=0)
>>> Z = X - mu
>>> C = 1 / len(X) * Z.T @ Z
```

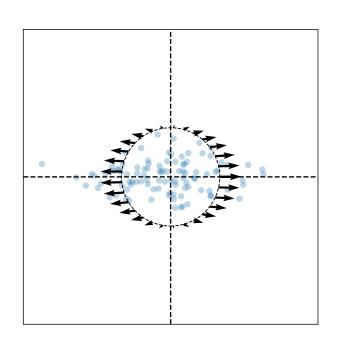

Lecture 10 | Part 2

Visualizing Covariance Matrices

- Covariance matrices are symmetric.
- They have axes of symmetry (eigenvectors and eigenvalues).

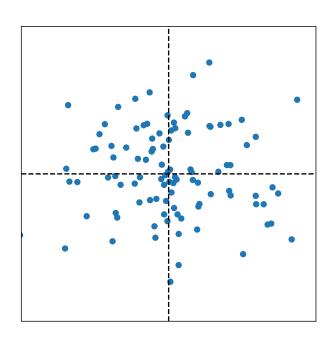
What are they?



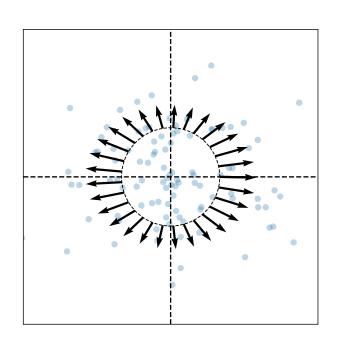


Eigenvectors:

$$\vec{u}^{(1)}\approx$$

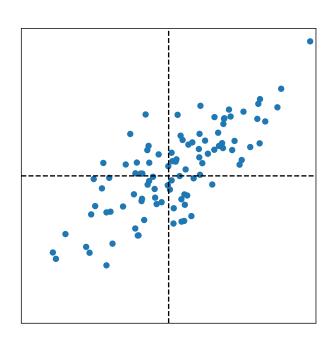


$$C \approx \left(\right)$$

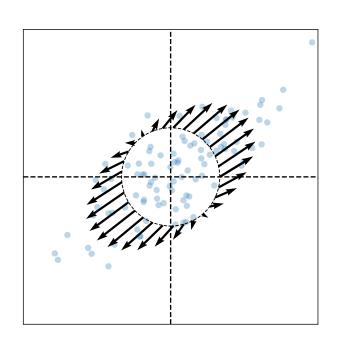


Eigenvectors:

$$\vec{u}^{(1)} \approx$$



$$C \approx \left(\right)$$



Eigenvectors:

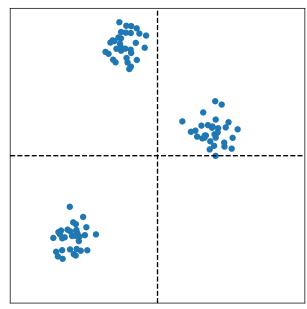
$$\vec{u}^{(1)} \approx$$

Intuitions

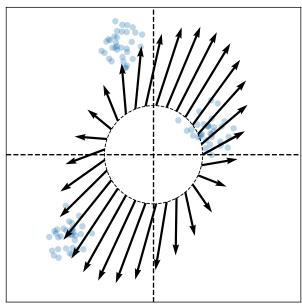
- ► The **eigenvectors** of the covariance matrix describe the data's "principal directions"
 - C tells us something about data's shape.
- ► The **top eigenvector** points in the direction of "maximum variance".

► The **top eigenvalue** is proportional to the variance in this direction.

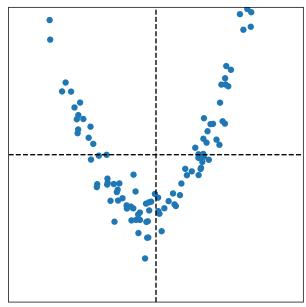
- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



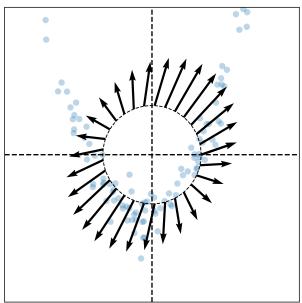
- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



DSC 1408 Representation Learning

Lecture 10 | Part 3

PCA, More Formally

The Story (So Far)

- ▶ We want to create a single new feature, z.
- Our idea: $z = \vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".

Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

We haven't actually defined "direction of maximum variance"

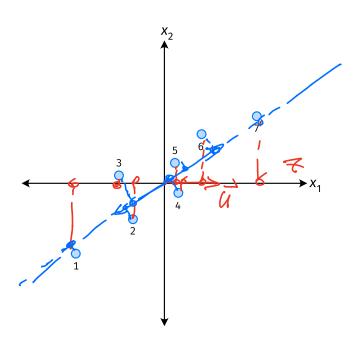
Let's derive PCA more formally.

Variance in a Direction

Let \vec{u} be a unit vector.

- $z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- ► The variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)} - \mu_z)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u} + \mu_z)$$



Note

If the data are centered, then $\mu_z = 0$ and the variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)})^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^{2}$$

Goal

ightharpoonup The variance of a data set in the direction of \vec{u} is:

$$\max_{\vec{u}} g(\vec{u}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^2$$
 5.4. $||\vec{u}|| = 1$

ightharpoonup Our goal: Find a unit vector \vec{u} which maximizes g.

Claim
$$C = \frac{1}{n} \times \frac{1}{x} \times \frac{1}$$

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^T C \vec{u}$.

Claim

C: Symmetric motric

To maximize
$$\vec{u}^T C \vec{u}$$
 over unit vectors, choose \vec{u} to be the top eigenvector of C .

Proof: $\vec{v}^{(2)}$: eigenvec of C orthonormal

 $\vec{\lambda}_{l} > \vec{\lambda}_{2}$: eigenvalue

Claim

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

PCA (for a single new feature)

- ► **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- 1. Compute the covariance matrix, C.
- 2. Compute the top eigenvector \vec{u} , of C.
- 3. For $i \in \{1, ..., n\}$, create new feature:

$$z^{(i)} = \vec{u} \cdot \vec{x}^{(i)}$$

Q (1,2 , ...)

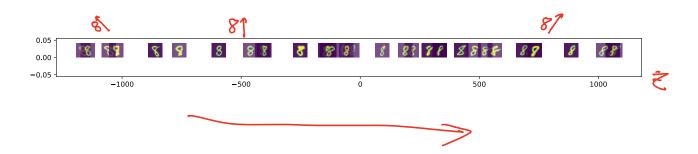
lo classes

A Parting Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

$$Z = \tilde{\chi}^{(i)} \cdot \tilde{\chi}$$

1



DSC 1408 Representation Learning

Lecture 10 | Part 4

Dimensionality Reduction with $d \ge 2$

So far: PCA

- ► **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- **Map**: each data point $\vec{x}^{(i)}$ to a single feature, z_i .
 - Idea: maximize the variance of the new feature
- ▶ **PCA**: Let $z_i = \vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix, \vec{c} .

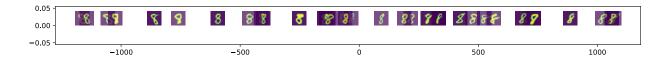
Now: More PCA

- ► **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- Map: each data point $\vec{x}^{(i)}$ to k new features, $\vec{z}^{(i)} = (z_1^{(i)}, \dots, z_k^{(i)})$.

A Single Principal Component

- Recall: the <u>principal component</u> is the top eigenvector \vec{u} of the covariance matrix, C
- ▶ It is a unit vector in \mathbb{R}^d
- Make a new feature $z \in \mathbb{R}$ for point $\vec{x} \in \mathbb{R}^d$ by computing $z = \vec{x} \cdot \vec{u}$
- ► This is dimensionality reduction from $\mathbb{R}^d \to \mathbb{R}^1$

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image



Another Feature?

- ► Clearly, mapping from $\mathbb{R}^{784} \to \mathbb{R}^1$ loses a lot of information
- ▶ What about mapping from $\mathbb{R}^{784} \to \mathbb{R}^2$? \mathbb{R}^k ?

Our first feature is a mixture of features, with weights given by unit vector $\vec{u}^{(1)} = (u_1^{(1)}, u_2^{(1)}, ..., u_d^{(1)})^T$.

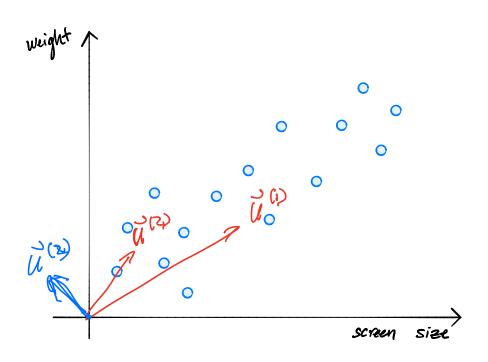
$$z_1 = \vec{u}^{(1)} \cdot \vec{x} = u_1^{(1)} x_1 + \dots + u_d^{(1)} x_d$$

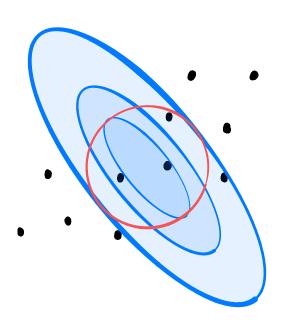
To maximize variance, choose $\vec{u}^{(1)}$ to be top eigenvector of C.

Make same assumption for second feature:

$$z_2 = \vec{u}^{(2)} \cdot \vec{x} = u_1^{(2)} x_1 + \dots + u_d^{(2)} x_d$$

- ► How do we choose $\vec{u}^{(2)}$?
- We should choose $\vec{u}^{(2)}$ to be **orthogonal** to $\vec{u}^{(1)}$. No "redundancy".
 - 2 keep as much info of date as possible





Intuition

- ► Claim: if \vec{u} and \vec{v} are eigenvectors of a symmetric matrix with distinct eigenvalues, they are orthogonal.
- We should choose $\vec{u}^{(2)}$ to be an **eigenvector** of the covariance matrix, C.
- The second eigenvector of C is called the second principal component.

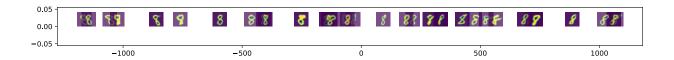
A Second Principal Component

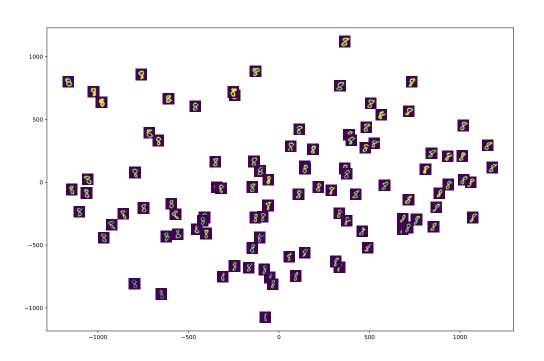
- Given a covariance matrix C.
- The principal component $\vec{u}^{(1)}$ is the top eigenvector of C.
 - Points in the direction of maximum variance.
- The second principal component $\vec{u}^{(2)}$ is the second eigenvector of C.
 - Out of all vectors orthogonal to the principal component, points in the direction of max variance.

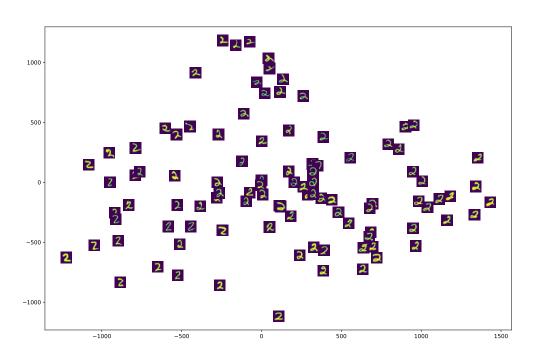
PCA: Two Components

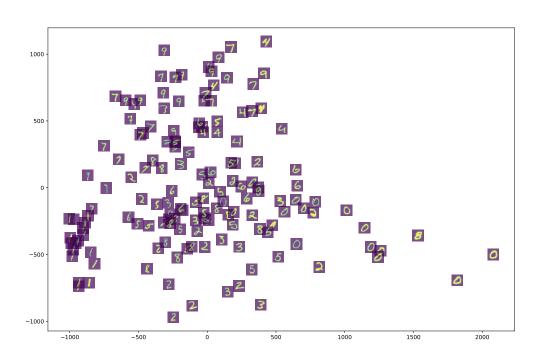
- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$.
- Compute covariance matrix C, top two eigenvectors $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^2 is $\vec{z} = (z_1, z_2)^T$, where:

$$z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$z_2 = \vec{x} \cdot \vec{u}^{(2)}$$









PCA: *k* Components

- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$, number of components k.
- Compute covariance matrix C, top $k \le d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}$, ..., $\vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^k is $\vec{z} = (z_1, z_2, ... z_k)^T$, where:

$$Z_{1} = \vec{X} \cdot \vec{u}^{(1)}$$

$$Z_{2} = \vec{X} \cdot \vec{u}^{(2)}$$

$$\vdots$$

$$Z_{k} = \vec{X} \cdot \vec{u}^{(k)}$$

Matrix Formulation

- Let X be the **data matrix** (n rows, d columns)
- Let *U* be matrix of the *k* eigenvectors as columns (*d* rows, *k* columns)
- ► The new representation: Z = XU

DSC 1408 Representation Learning

Lecture 10 | Part 5

Reconstructions

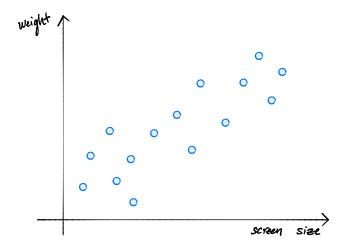
Reconstructing Points

PCA helps us reduce dimensionality from $\mathbb{R}^d \to R^k$

- ▶ Suppose we have the "new" representation in \mathbb{R}^k .
- ightharpoonup Can we "go back" to \mathbb{R}^d ?
- And why would we want to?

Back to \mathbb{R}^d

- Suppose new representation of \vec{x} is z.
- $z = \vec{x} \cdot \vec{u}^{(1)}$
- ► Idea: $\vec{x} \approx z \vec{u}^{(1)}$



Reconstructions

- ▶ Given a "new" representation of \vec{x} , $\vec{z} = (z_1, ..., z_k) \in \mathbb{R}^k$
- And top k eigenvectors, $\vec{u}^{(1)}, ..., \vec{u}^{(k)}$
- ► The **reconstruction** of \vec{x} is

$$Z_1 \vec{u}^{(1)} + Z_2 \vec{u}^{(2)} + ... + Z_b \vec{u}^{(k)} = U \vec{z}$$

Reconstruction Error

- The reconstruction approximates the original point, \vec{x} .
- The reconstruction error for a single point, \vec{x} :

$$\|\vec{x} - U\vec{z}\|^2$$

Total reconstruction error:

$$\sum_{i=1}^{n} \|\vec{x}^{(i)} - U\vec{z}^{(i)}\|^2$$

