Representation Learning

Lecture 10 | Part 1

Covariance Matrices

Variance

We know how to compute the variance of a set of numbers X = {x⁽¹⁾, ..., x⁽ⁿ⁾}:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$$

The variance measures the "spread" of the data

Generalizing Variance

If we have two features, x₁ and x₂, we can compute the variance of each as usual:

$$Var(x_1) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_1^{(i)} - \mu_1)^2$$
$$Var(x_2) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_2^{(i)} - \mu_2)^2$$

• Can also measure how x_1 and x_2 vary together.

Measuring Similar Information

- Features which share information if they vary together.
 - A.k.a., they "co-vary"
- Positive association: when one is above average, so is the other
- Negative association: when one is above average, the other is below average

Examples

- Positive: temperature and ice cream cones sold.
- Positive: temperature and shark attacks.
- Negative: temperature and coats sold.

Centering

First, it will be useful to **center** the data.

Centering

Compute the mean of each feature:

$$\mu_j = \frac{1}{n} \sum_{1}^{n} \vec{x}_j^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \begin{pmatrix} \vec{x}_1^{(i)} - \mu_1 \\ \vec{x}_2^{(i)} - \mu_2 \\ \vdots \\ \vec{x}_d^{(i)} - \mu_d \end{pmatrix}$$

Centering (Equivalently)

Compute the mean of all data points:

$$\mu = \frac{1}{n} \sum_{1}^{n} \vec{x}^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)}=\vec{x}^{(i)}-\mu$$

Exercise

Center the data set:

$$\vec{x}^{(1)} = (1, 2, 3)^T$$

 $\vec{x}^{(2)} = (-1, -1, 0)^T$
 $\vec{x}^{(3)} = (0, 2, 3)^T$

One approach is as follows¹.

$$Cov(x_i, x_j) = \frac{1}{n} \sum_{k=1}^n \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

For each data point, multiply the value of feature i and feature j, then average these products.

▶ This is the **covariance** of features *i* and *j*.

¹Assuming centered data

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

- The covariance quantifies extent to which two variables vary together.
- Assume we have centered the data.
- The sample covariance of feature i and j is:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Exercise

True or False: $\sigma_{ij} = \sigma_{ji}$? $\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$

Covariance Matrices

▶ Given data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$.

The sample covariance matrix C is the d × d matrix whose ij entry is defined to be σ_{ii}.

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Observations

- Diagonal entries of C are the variances.
- ► The matrix is **symmetric**!

Note

Sometimes you'll see the sample covariance defined as:

$$\sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Note the 1/(n - 1)

- This is an unbiased estimator of the population covariance.
- Our definition is the **maximum likelihood** estimator.
- ▶ In practice, it doesn't matter: $1/(n 1) \approx 1/n$.
- For consistency, in this class use 1/n.

Computing Covariance

- There is a "trick" for computing sample covariance matrices.
- Step 1: make n × d data matrix, X
- Step 2: make Z by centering columns of X

• Step 3:
$$C = \frac{1}{n}Z^{T}Z$$

Computing Covariance (in code)²

²Or use np.cov

DSC 140B Representation Learning

Lecture 10 | Part 2

Visualizing Covariance Matrices

Covariance matrices are symmetric.

They have axes of symmetry (eigenvectors and eigenvalues).

▶ What are they?

C ≈ (

Eigenvectors:

 $\vec{u}^{(1)} \approx \vec{u}^{(2)} \approx$

C ≈ (

Eigenvectors:

 $\vec{u}^{(1)} \approx \vec{u}^{(2)} \approx$

C ≈ (

Eigenvectors:

 $\vec{u}^{(1)} \approx \vec{u}^{(2)} \approx$

Intuitions

- The eigenvectors of the covariance matrix describe the data's "principal directions"
 C tells us something about data's shape.
- The top eigenvector points in the direction of "maximum variance".
- The top eigenvalue is proportional to the variance in this direction.

- ▶ The data doesn't always look like this.
- ▶ We can always compute covariance matrices.
- They just may not describe the data's shape very well.

- The data doesn't always look like this.
- ▶ We can always compute covariance matrices.
- They just may not describe the data's shape very well.

- The data doesn't always look like this.
- ▶ We can always compute covariance matrices.
- They just may not describe the data's shape very well.

- The data doesn't always look like this.
- ▶ We can always compute covariance matrices.
- They just may not describe the data's shape very well.

Representation Learning

Lecture 10 | Part 3

PCA, More Formally

The Story (So Far)

- We want to create a single new feature, z.
- Our idea: $z = \vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

- We haven't actually defined "direction of maximum variance"
- Let's derive PCA more formally.
Variance in a Direction

• Let \vec{u} be a unit vector.

►
$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$
 is the new feature for $\vec{x}^{(i)}$.

The variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)} - \mu_z)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u} - \mu_z)^2$$

Note

► If the data are centered, then $\mu_z = 0$ and the variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)})^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^2$$

Goal

The variance of a data set in the direction of \vec{u} is:

$$g(\vec{u}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{x}^{(i)} \cdot \vec{u} \right)^2$$

• Our goal: Find a unit vector \vec{u} which maximizes g.

Claim

$$\frac{1}{n}\sum_{i=1}^{n}\left(\vec{x}^{(i)}\cdot\vec{u}\right)^{2}=\vec{u}^{\mathsf{T}}C\vec{u}$$

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^T C \vec{u}$.

Claim

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

PCA (for a single new feature)

• **Given**: data points $\vec{x}^{(1)}, \dots, \vec{x}^{(n)} \in \mathbb{R}^d$

- 1. Compute the covariance matrix, C.
- 2. Compute the top eigenvector \vec{u} , of C.
- 3. For $i \in \{1, ..., n\}$, create new feature:

$$z^{(i)} = \vec{u} \cdot \vec{x}^{(i)}$$

A Parting Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

DSC 140B Representation Learning

Lecture 10 | Part 4

Dimensionality Reduction with $d \ge 2$

So far: PCA

▶ **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$

- Map: each data point x⁽ⁱ⁾ to a single feature, z_i.
 Idea: maximize the variance of the new feature
- **PCA**: Let $z_i = \vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix, *C*.

Now: More PCA

Given: data $\vec{x}^{(1)}, \dots, \vec{x}^{(n)} \in \mathbb{R}^d$

• **Map**: each data point $\vec{x}^{(i)}$ to k new features, $\vec{z}^{(i)} = (z_1^{(i)}, \dots, z_k^{(i)}).$

A Single Principal Component

- Recall: the principal component is the top eigenvector *u* of the covariance matrix, C
- ▶ It is a unit vector in \mathbb{R}^d
- ► Make a new feature $z \in \mathbb{R}$ for point $\vec{x} \in \mathbb{R}^d$ by computing $z = \vec{x} \cdot \vec{u}$
- ▶ This is dimensionality reduction from $\mathbb{R}^d \to \mathbb{R}^1$

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Another Feature?

- Clearly, mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^1$ loses a lot of information
- ▶ What about mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^2$? \mathbb{R}^k ?

• Our first feature is a mixture of features, with weights given by unit vector $\vec{u}^{(1)} = (u_1^{(1)}, u_2^{(1)}, \dots, u_d^{(1)})^T$.

$$z_1 = \vec{u}^{(1)} \cdot \vec{x} = u_1^{(1)} x_1 + \dots + u_d^{(1)} x_d$$

To maximize variance, choose $\vec{u}^{(1)}$ to be top eigenvector of C.

Make same assumption for second feature:

$$z_2 = \vec{u}^{(2)} \cdot \vec{x} = u_1^{(2)} x_1 + \ldots + u_d^{(2)} x_d$$

- How do we choose $\vec{u}^{(2)}$?
- We should choose *u*⁽²⁾ to be **orthogonal** to *u*⁽¹⁾.
 No "redundancy".

Intuition

- Claim: if *u* and *v* are eigenvectors of a symmetric matrix with distinct eigenvalues, they are orthogonal.
- We should choose $\vec{u}^{(2)}$ to be an **eigenvector** of the covariance matrix, *C*.

The second eigenvector of C is called the second principal component.

A Second Principal Component

- ▶ Given a covariance matrix *C*.
- The principal component $\vec{u}^{(1)}$ is the top eigenvector of *C*.
 - Points in the direction of maximum variance.
- The second principal component $\vec{u}^{(2)}$ is the second eigenvector of C.
 - Out of all vectors orthogonal to the principal component, points in the direction of max variance.

PCA: Two Components

- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$.
- Compute covariance matrix C, top two eigenvectors $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^2 is $\vec{z} = (z_1, z_2)^T$, where:

$$z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$z_2 = \vec{x} \cdot \vec{u}^{(2)}$$

PCA: k Components

- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$, number of components k.
- Compute covariance matrix C, top $k \le d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}$, ..., $\vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^k is $\vec{z} = (z_1, z_2, ..., z_k)^T$, where:

$$Z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$Z_2 = \vec{x} \cdot \vec{u}^{(2)}$$
$$\vdots$$
$$Z_k = \vec{x} \cdot \vec{u}^{(k)}$$

Matrix Formulation

- Let X be the **data matrix** (n rows, d columns)
- Let U be matrix of the k eigenvectors as columns (d rows, k columns)
- ► The new representation: *Z* = *XU*

Representation Learning

Lecture 10 | Part 5

Reconstructions

Reconstructing Points

- PCA helps us reduce dimensionality from $\mathbb{R}^d \to \mathbb{R}^k$
- Suppose we have the "new" representation in \mathbb{R}^k .
- Can we "go back" to \mathbb{R}^d ?
- And why would we want to?

Back to \mathbb{R}^d

Suppose new representation of x is z.

$$z = \vec{x} \cdot \vec{u}^{(1)}$$

► Idea: $\vec{x} \approx z\vec{u}^{(1)}$

Reconstructions

▶ Given a "new" representation of \vec{x} , $\vec{z} = (z_1, ..., z_k) \in \mathbb{R}^k$

And top k eigenvectors, $\vec{u}^{(1)}, \dots, \vec{u}^{(k)}$

• The **reconstruction** of \vec{x} is

$$z_1 \vec{u}^{(1)} + z_2 \vec{u}^{(2)} + \dots + z_k \vec{u}^{(k)} = U \vec{z}$$

Reconstruction Error

- The reconstruction *approximates* the original point, \vec{x} .
- The reconstruction error for a single point, x:

 $\|\vec{x} - U\vec{z}\|^2$

Total reconstruction error:

$$\sum_{i=1}^n \|\vec{x}^{(i)} - U\vec{z}^{(i)}\|^2$$

