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Lecture 10 Part1

Covariance Matrices



Variance

We know how to compute the variance of a set of
numbers X = {x(), ..., x(M}.

IR,
Var(X) = = > (x - py?
i=1

The variance measures the “spread” of the data



Generalizing Variance

If we have two features, x, and x,, we can
compute the variance of each as usual:

1 <C 5
Var(x;) = = > (% - u;)?
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1 NG
Var(x,) = - Z(xg’) - U,)?
i=1

Can also measure how x,; and x, vary together.



Measuring Similar Information

Features which share information if they vary

together.
A.k.a., they “co-vary”

Positive association: when one is above average,
so is the other

Negative association: when one is above
average, the other is below average



Examples
Positive: temperature and ice cream cones sold.
Positive: temperature and shark attacks.

Negative: temperature and coats sold.



Centering

First, it will be useful to center the data.
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Centering

Compute the mean of each feature:



Centering (Equivalently)

Compute the mean of all data points:
1 n
w2 X

Define new centered data:

30) = 30 -y



Center the data set:
P
@)
33)

(1,2,3)
(-1,-1,0)7
(0,2,3)"




Quantifying Co-Variance

One approach is as follows'.

S 0
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k=1

BIA

Cov(x;, X;) =

For each data point, multiply the value of feature i
and feature j, then average these products.

This is the covariance of features i and j.

TAssuming centered data



Quantifying Covariance
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Assume the data are
centered.
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Quantifying Covariance
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Quantifying Covariance
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Quantifying Covariance

The covariance quantifies extent to which two
variables vary together.

Assume we have centered the data.
The sample covariance of feature i and j is:

= (k) o)
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Covariance Matrices
Given data x(V, ..., X" e RY.

The sample covariance matrix Cis the d x d
matrix whose ij entry is defined to be oy;.

1 < $(R)3
0ij ﬁz

k=1



Observations
Diagonal entries of C are the variances.

The matrix is symmetric!



Note

Sometimes you'll see the sample covariance defined as:

Note the 1/(n - 1)

This is an unbiased estimator of the population covariance.
Our definition is the maximum likelihood estimator.

In practice, it doesn’t matter: 1/(n-1) = 1/n.

For consistency, in this class use 1/n.



Computing Covariance

There is a “trick” for computing sample
covariance matrices.

Step 1: make n x d data matrix, X
Step 2: make Z by centering columns of X

Step3: C= 1277



Computing Covariance (in code)’

»> mu = X.mean(axis=0)
»> Z X - mu
»> C =1/ len(X) » Z.T @ Z

20r use np.cov
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Visualizing Covariance Matrices



Visualizing Covariance Matrices
Covariance matrices are symmetric.

They have axes of symmetry (eigenvectors and
eigenvalues).

What are they?



Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices




Visualizing Covariance Matrices
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Intuitions

The eigenvectors of the covariance matrix

describe the data’s “principal directions”
C tells us something about data’s shape.

The top eigenvector points in the direction of
“maximum variance”.

The top eigenvalue is proportional to the
variance in this direction.



Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.




Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.

. : -
i o®
[ ] 1
i
! y
U B
e i
& °
s° ! o0
% i l“
[m==-------gee------ T"'..:,. """""""
e | ®
ol




Caution

The data doesn’t always look like this.
We can always compute covariance matrices.
They just may not describe the data’s shape very well.
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PCA, More Formally



The Story (So Far)

We want to create a single new feature, z.

Our idea: z = X - Ul; choose U to point in the
“direction of maximum variance”.

Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.



More Formally...

We haven't actually defined “direction of
maximum variance”

Let's derive PCA more formally.



Variance in a Direction
Let U be a unit vector.
Z0 = x0) . {1 is the new feature for X,

The variance of the new features is:

(20 - p,)?
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Var(z) =
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Example
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Note

If the data are centered, then p, = 0 and the
variance of the new features is:

C A0))2
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i=1

BIA

Var(z) =

BIA



Goal

The variance of a data set in the direction of 4 is:

Our goal: Find a unit vector & which maximizes g.






Our Goal (Again)

Find a unit vector  which maximizes u'Cd.



Claim

To maximize 4'Cu over unit vectors, choose i to
be the top eigenvector of C.

Proof:



PCA (for a single new feature)
Given: data points (", ..., X" e R4
Compute the covariance matrix, C.

Compute the top eigenvector i, of C.

For i €{1,...,n}, create new feature:

A0 = g 30



A Parting Example
MNIST: 60,000 images in 784 dimensions
Principal component: i € R’8

We can project an image in R’®* onto 4 to get a
single number representing the image



Example
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Dimensionality Reduction with d > 2



So far: PCA
Given: data XV, ..., X" e R4

Map: each data point X to a single feature, z,.
Idea: maximize the variance of the new feature

PCA: Let z, = X - §j, where i is top eigenvector of
covariance matrix, C.



Now: More PCA
Given: data ("), ..., X" e RY

Map: each data point X() to k new features,
20 = @,..., 7).



A Single Principal Component

Recall: the principal component is the top
eigenvector i of the covariance matrix, C

It is a unit vector in R

Make a new feature z € R for point X € R? by
computingz=X- 0

This is dimensionality reduction from R4 —» R’



Example
MNIST: 60,000 images in 784 dimensions
Principal component: i € R’8

We can project an image in R’®* onto 4 to get a
single number representing the image



Example
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Another Feature?

Clearly, mapping from R’ — R loses a lot of
information

What about mapping from R78* — R2?? RF?



A Second Feature

Our first feature is a mixture of features, with weights
given by unit vector i = (u{", u{", ..., ul)".

- M.y =y (1)
z, = 0MW X = 0%, + v uyxy

To maximize variance, choose (") to be top
eigenvector of C.



A Second Feature

Make same assumption for second feature:

_ 5 2 _ 2 (2)
z, = U@ X = ux, + v Uy xy
How do we choose i(¥)?

We should choose ii® to be orthogonal to i(".
No “redundancy”.
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A Second Feature




Intuition

Claim: if U and v are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.

We should choose ii? to be an eigenvector of
the covariance matrix, C.

The second eigenvector of C is called the second
principal component.



A Second Principal Component
Given a covariance matrix C.

The principal component &) is the top
eigenvector of C.
Points in the direction of maximum variance.

The second principal component ii? is the
second eigenvector of C.

Out of all vectors orthogonal to the principal
component, points in the direction of max variance.



PCA: Two Components
Given data {x(",.., X(M} e RY.

Compute covariance matrix C, top two
eigenvectors 4" and (2.

For any vector X € R, its new representation in
R? is Z = (z,2,)", where:

Z4

]
X1 X4

Z;



Example
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PCA: kR Components
Given data {X(", .., XM} € RY number of components k.

Compute covariance matrix C, top k < d eigenvectors (),
(2 ij(R)
@, .. ah.

For any vector X € R, its new representation in R* is
7 =(z4,2,-.-2,)", Where:

—y.00
z,=X%-aM
- yv.n2
z,=X-0@
- 3.k
z,=Xx-a®



Matrix Formulation
Let X be the data matrix (n rows, d columns)

Let U be matrix of the k eigenvectors as columns
(d rows, k columns)

The new representation: Z = XU
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Reconstructions



Reconstructing Points

PCA helps us reduce dimensionality from
R? — R

Suppose we have the “new” representation in RX.
Can we “go back” to R9?

And why would we want to?



Back to R?

W'«“zw( N
Suppose new o
representation of X is z. o o ©
o
z=X-u o o
o o ©
Idea: X = zii(" o ©
o
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Reconstructions

Given a “new” representation of X, Z = (z,, ..., Z,) € R¥

And top k eigenvectors, (), ..., ik

The reconstruction of X is

2,00 + 2,0@ + .+ 2,0 = UZ



Reconstruction Error

The reconstruction approximates
the original point, X.

The reconstruction error for a wt
single point, X: °
o [¢] R
|X - UZ|? o o °
o o ©
Total reconstruction error: ° 7
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