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Covariance Matrices



Variance

▶ We know how to compute the variance of a set of
numbers 𝑋 = {𝑥(1), … , 𝑥(𝑛)}:

Var(𝑋) = 1𝑛

𝑛

∑
𝑖=1
(𝑥(𝑖) − 𝜇)2

▶ The variance measures the “spread” of the data



Generalizing Variance
▶ If we have two features, 𝑥1 and 𝑥2, we can
compute the variance of each as usual:

Var(𝑥1) =
1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥(𝑖)1 − 𝜇1)2

Var(𝑥2) =
1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥(𝑖)2 − 𝜇2)2

▶ Can also measure how 𝑥1 and 𝑥2 vary together.



Measuring Similar Information

▶ Features which share information if they vary
together.
▶ A.k.a., they “co-vary”

▶ Positive association: when one is above average,
so is the other

▶ Negative association: when one is above
average, the other is below average



Examples

▶ Positive: temperature and ice cream cones sold.

▶ Positive: temperature and shark attacks.

▶ Negative: temperature and coats sold.



Centering
▶ First, it will be useful to center the data.



Centering
▶ Compute the mean of each feature:

𝜇𝑗 =
1
𝑛

𝑛

∑
1

⃗𝑥(𝑖)𝑗

▶ Define new centered data:

⃗𝑧(𝑖) = (

⃗𝑥(𝑖)1 − 𝜇1
⃗𝑥(𝑖)2 − 𝜇2

⋮
⃗𝑥(𝑖)𝑑 − 𝜇𝑑

)



Centering (Equivalently)

▶ Compute the mean of all data points:

𝜇 = 1𝑛

𝑛

∑
1

⃗𝑥(𝑖)

▶ Define new centered data:

⃗𝑧(𝑖) = ⃗𝑥(𝑖) − 𝜇



Exercise

Center the data set:

⃗𝑥(1) = (1, 2, 3)𝑇

⃗𝑥(2) = (−1, −1, 0)𝑇

⃗𝑥(3) = (0, 2, 3)𝑇



Quantifying Co-Variance

▶ One approach is as follows1.

Cov(𝑥𝑖, 𝑥𝑗) =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

▶ For each data point, multiply the value of feature 𝑖
and feature 𝑗, then average these products.

▶ This is the covariance of features 𝑖 and 𝑗.

1Assuming centered data



Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17

7

∑
𝑖=1

⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2
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Quantifying Covariance

▶ The covariance quantifies extent to which two
variables vary together.

▶ Assume we have centered the data.

▶ The sample covariance of feature 𝑖 and 𝑗 is:

𝜎𝑖𝑗 =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Exercise

True or False: 𝜎𝑖𝑗 = 𝜎𝑗𝑖?

𝜎𝑖𝑗 =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Covariance Matrices

▶ Given data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑.

▶ The sample covariance matrix 𝐶 is the 𝑑 × 𝑑
matrix whose 𝑖𝑗 entry is defined to be 𝜎𝑖𝑗.

𝜎𝑖𝑗 =
1
𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Observations

▶ Diagonal entries of 𝐶 are the variances.

▶ The matrix is symmetric!



Note
▶ Sometimes you’ll see the sample covariance defined as:

𝜎𝑖𝑗 =
1

𝑛 − 1

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗

Note the 1/(𝑛 − 1)
▶ This is an unbiased estimator of the population covariance.
▶ Our definition is the maximum likelihood estimator.
▶ In practice, it doesn’t matter: 1/(𝑛 − 1) ≈ 1/𝑛.
▶ For consistency, in this class use 1/𝑛.



Computing Covariance

▶ There is a “trick” for computing sample
covariance matrices.

▶ Step 1: make 𝑛 × 𝑑 data matrix, 𝑋

▶ Step 2: make 𝑍 by centering columns of 𝑋

▶ Step 3: 𝐶 = 1
𝑛𝑍𝑇𝑍



Computing Covariance (in code)2

»> mu = X.mean(axis=0)
»> Z = X - mu
»> C = 1 / len(X) * Z.T @ Z

2Or use np.cov
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Visualizing Covariance Matrices



Visualizing Covariance Matrices

▶ Covariance matrices are symmetric.

▶ They have axes of symmetry (eigenvectors and
eigenvalues).

▶ What are they?



Visualizing Covariance Matrices

𝐶 ≈ ( )
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Eigenvectors:

�⃗�(1) ≈
�⃗�(2) ≈
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Visualizing Covariance Matrices
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Visualizing Covariance Matrices

Eigenvectors:

�⃗�(1) ≈
�⃗�(2) ≈



Intuitions

▶ The eigenvectors of the covariance matrix
describe the data’s “principal directions”
▶ 𝐶 tells us something about data’s shape.

▶ The top eigenvector points in the direction of
“maximum variance”.

▶ The top eigenvalue is proportional to the
variance in this direction.



Caution
▶ The data doesn’t always look like this.
▶ We can always compute covariance matrices.
▶ They just may not describe the data’s shape very well.
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PCA, More Formally



The Story (So Far)

▶ We want to create a single new feature, 𝑧.

▶ Our idea: 𝑧 = ⃗𝑥 ⋅ �⃗�; choose �⃗� to point in the
“direction of maximum variance”.

▶ Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.



More Formally...

▶ We haven’t actually defined “direction of
maximum variance”

▶ Let’s derive PCA more formally.



Variance in a Direction

▶ Let �⃗� be a unit vector.

▶ 𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� is the new feature for ⃗𝑥(𝑖).

▶ The variance of the new features is:

Var(𝑧) = 1𝑛

𝑛

∑
𝑖=1
(𝑧(𝑖) − 𝜇𝑧)2

= 1𝑛

𝑛

∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗� − 𝜇𝑧)

2



Example



Note

▶ If the data are centered, then 𝜇𝑧 = 0 and the
variance of the new features is:

Var(𝑧) = 1𝑛

𝑛

∑
𝑖=1
(𝑧(𝑖))2

= 1𝑛

𝑛

∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗�)2



Goal

▶ The variance of a data set in the direction of �⃗� is:

𝑔(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗�)2

▶ Our goal: Find a unit vector �⃗� which maximizes 𝑔.



Claim

1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥(𝑖) ⋅ �⃗�)2 = �⃗�𝑇𝐶�⃗�



Our Goal (Again)

▶ Find a unit vector �⃗� which maximizes �⃗�𝑇𝐶�⃗�.



Claim

▶ To maximize �⃗�𝑇𝐶�⃗� over unit vectors, choose �⃗� to
be the top eigenvector of 𝐶.

▶ Proof:



PCA (for a single new feature)

▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

1. Compute the covariance matrix, 𝐶.

2. Compute the top eigenvector �⃗�, of 𝐶.

3. For 𝑖 ∈ {1, … , 𝑛}, create new feature:

𝑧(𝑖) = �⃗� ⋅ ⃗𝑥(𝑖)



A Parting Example

▶ MNIST: 60,000 images in 784 dimensions

▶ Principal component: �⃗� ∈ ℝ784

▶ We can project an image in ℝ784 onto �⃗� to get a
single number representing the image



Example

1000 500 0 500 1000
0.05

0.00

0.05
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Dimensionality Reduction with d ≥ 2



So far: PCA

▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

▶ Map: each data point ⃗𝑥(𝑖) to a single feature, 𝑧𝑖.
▶ Idea: maximize the variance of the new feature

▶ PCA: Let 𝑧𝑖 = ⃗𝑥(𝑖) ⋅ �⃗�, where �⃗� is top eigenvector of
covariance matrix, 𝐶.



Now: More PCA

▶ Given: data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑

▶ Map: each data point ⃗𝑥(𝑖) to 𝑘 new features,
⃗𝑧(𝑖) = (𝑧(𝑖)1 , … , 𝑧

(𝑖)
𝑘 ).



A Single Principal Component

▶ Recall: the principal component is the top
eigenvector �⃗� of the covariance matrix, 𝐶

▶ It is a unit vector in ℝ𝑑

▶ Make a new feature 𝑧 ∈ ℝ for point ⃗𝑥 ∈ ℝ𝑑 by
computing 𝑧 = ⃗𝑥 ⋅ �⃗�

▶ This is dimensionality reduction from ℝ𝑑 → ℝ1



Example

▶ MNIST: 60,000 images in 784 dimensions

▶ Principal component: �⃗� ∈ ℝ784

▶ We can project an image in ℝ784 onto �⃗� to get a
single number representing the image



Example

1000 500 0 500 1000
0.05

0.00

0.05



Another Feature?

▶ Clearly, mapping from ℝ784 → ℝ1 loses a lot of
information

▶ What about mapping from ℝ784 → ℝ2? ℝ𝑘?



A Second Feature
▶ Our first feature is a mixture of features, with weights
given by unit vector �⃗�(1) = (𝑢(1)1 , 𝑢

(1)
2 , … , 𝑢

(1)
𝑑 )

𝑇.

𝑧1 = �⃗�(1) ⋅ ⃗𝑥 = 𝑢(1)1 𝑥1 + … + 𝑢
(1)
𝑑 𝑥𝑑

▶ To maximize variance, choose �⃗�(1) to be top
eigenvector of 𝐶.



A Second Feature
▶ Make same assumption for second feature:

𝑧2 = �⃗�(2) ⋅ ⃗𝑥 = 𝑢(2)1 𝑥1 + … + 𝑢
(2)
𝑑 𝑥𝑑

▶ How do we choose �⃗�(2)?

▶ We should choose �⃗�(2) to be orthogonal to �⃗�(1).
▶ No “redundancy”.



A Second Feature



A Second Feature



Intuition

▶ Claim: if �⃗� and ⃗𝑣 are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.

▶ We should choose �⃗�(2) to be an eigenvector of
the covariance matrix, 𝐶.

▶ The second eigenvector of 𝐶 is called the second
principal component.



A Second Principal Component

▶ Given a covariance matrix 𝐶.

▶ The principal component �⃗�(1) is the top
eigenvector of 𝐶.
▶ Points in the direction of maximum variance.

▶ The second principal component �⃗�(2) is the
second eigenvector of 𝐶.
▶ Out of all vectors orthogonal to the principal
component, points in the direction of max variance.



PCA: Two Components

▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑.

▶ Compute covariance matrix 𝐶, top two
eigenvectors �⃗�(1) and �⃗�(2).

▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in
ℝ2 is ⃗𝑧 = (𝑧1, 𝑧2)𝑇, where:

𝑧1 = ⃗𝑥 ⋅ �⃗�(1)

𝑧2 = ⃗𝑥 ⋅ �⃗�(2)



Example

1000 500 0 500 1000
0.05

0.00

0.05



Example

1000 500 0 500 1000

1000

500

0

500

1000
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1000 500 0 500 1000
0.05

0.00

0.05



Example

1000 500 0 500 1000 1500

1000

500

0

500

1000



Example

1000 500 0 500 1000 1500 2000

1000

500

0

500

1000



PCA: 𝑘 Components
▶ Given data { ⃗𝑥(1), ..., ⃗𝑥(𝑛)} ∈ ℝ𝑑, number of components 𝑘.

▶ Compute covariance matrix 𝐶, top 𝑘 ≤ 𝑑 eigenvectors �⃗�(1),
�⃗�(2), …, �⃗�(𝑘).

▶ For any vector ⃗𝑥 ∈ ℝ, its new representation in ℝ𝑘 is
⃗𝑧 = (𝑧1, 𝑧2, … 𝑧𝑘)𝑇, where:

𝑧1 = ⃗𝑥 ⋅ �⃗�(1)

𝑧2 = ⃗𝑥 ⋅ �⃗�(2)
⋮

𝑧𝑘 = ⃗𝑥 ⋅ �⃗�(𝑘)



Matrix Formulation

▶ Let 𝑋 be the data matrix (𝑛 rows, 𝑑 columns)

▶ Let 𝑈 be matrix of the 𝑘 eigenvectors as columns
(𝑑 rows, 𝑘 columns)

▶ The new representation: 𝑍 = 𝑋𝑈
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Reconstructions



Reconstructing Points

▶ PCA helps us reduce dimensionality from
ℝ𝑑 → 𝑅𝑘

▶ Suppose we have the “new” representation in ℝ𝑘.

▶ Can we “go back” to ℝ𝑑?

▶ And why would we want to?



Back to ℝ𝑑

▶ Suppose new
representation of ⃗𝑥 is 𝑧.

▶ 𝑧 = ⃗𝑥 ⋅ �⃗�(1)

▶ Idea: ⃗𝑥 ≈ 𝑧�⃗�(1)



Reconstructions
▶ Given a “new” representation of ⃗𝑥, ⃗𝑧 = (𝑧1, … , 𝑧𝑘) ∈ ℝ𝑘

▶ And top 𝑘 eigenvectors, �⃗�(1), … , �⃗�(𝑘)

▶ The reconstruction of ⃗𝑥 is

𝑧1�⃗�(1) + 𝑧2�⃗�(2) + … + 𝑧𝑘�⃗�(𝑘) = 𝑈 ⃗𝑧



Reconstruction Error
▶ The reconstruction approximates
the original point, ⃗𝑥.

▶ The reconstruction error for a
single point, ⃗𝑥:

‖ ⃗𝑥 − 𝑈 ⃗𝑧‖2

▶ Total reconstruction error:
𝑛

∑
𝑖=1
‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2


