DSC 140B Representation Learning

Lecture 11 | Part 1

Dimensionality Reduction with $d \ge 2$

So far: PCA

• **Given**: data $\vec{x}^{(1)}, \dots, \vec{x}^{(n)} \in \mathbb{R}^d$

- Map: each data point x⁽ⁱ⁾ to a single feature, z_i.
 Idea: maximize the variance of the new feature
- **PCA**: Let $z_i \neq \vec{x}^{(i)} \cdot \vec{u}$, where \vec{u} is top eigenvector of covariance matrix, C.

Now: More PCA

- ► **Given**: data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- Map: each data point $\vec{x}^{(i)}$ to k new features, $\vec{z}^{(i)} = (z_1^{(i)}, \dots, z_k^{(i)}).$

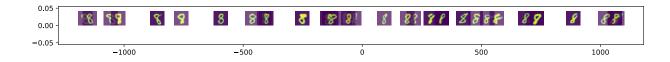
A Single Principal Component

Recall: the principal component is the top eigenvector u of the covariance matrix, C

► It is a unit vector in \mathbb{R}^d

- ► Make a new feature $z \in \mathbb{R}$ for point $\vec{x} \in \mathbb{R}^d$ by computing $z = \vec{x} \cdot \vec{u}$
- ▶ This is dimensionality reduction from $\mathbb{R}^d \to \mathbb{R}^1$

- MNIST: 60,000 images in 784 dimensions
- ▶ Principal component: $\vec{u} \in \mathbb{R}^{784}$
- ► We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image



Another Feature?

- ▶ Clearly, mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^1$ loses a lot of information
- ▶ What about mapping from $\mathbb{R}^{784} \rightarrow \mathbb{R}^2$? \mathbb{R}^k ?

• Our first feature is a mixture of features, with weights given by unit vector $\vec{u}^{(1)} = (u_1^{(1)}, u_2^{(1)}, \dots, u_d^{(1)})^T$.

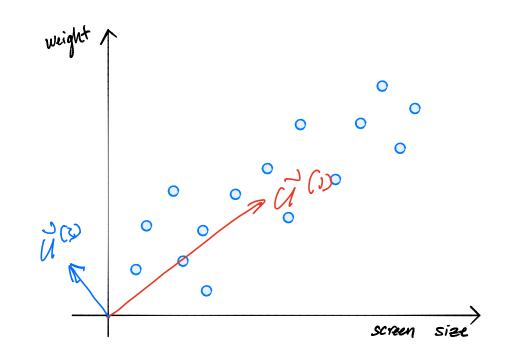
$$z_1 = \vec{u}^{(1)} \cdot \vec{x} = u_1^{(1)} x_1 + \dots + u_d^{(1)} x_d$$

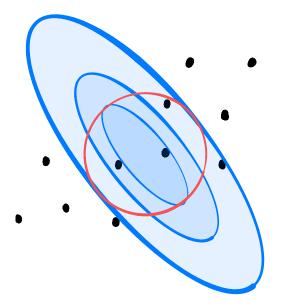
To maximize variance, choose $\vec{u}^{(1)}$ to be top eigenvector of C.

Make same assumption for second feature:

$$z_2 = \vec{u}^{(2)} \cdot \vec{x} = u_1^{(2)} x_1 + \dots + u_d^{(2)} x_d$$

- How do we choose $\vec{u}^{(2)}$?
- We should choose $\vec{u}^{(2)}$ to be **orthogonal** to $\vec{u}^{(1)}$.
 No "redundancy". max info





•

Claim: if u and v are eigenvectors of a symmetric matrix with distinct eigenvalues, they are orthogonal.

• We should choose $\vec{u}^{(2)}$ to be an **eigenvector** of the covariance matrix, *C*.

 $\vec{u} = C \cdot \vec{u} \cdot \vec{v} = \vec{u} \cdot (C^T \vec{v}) = \vec{u} \cdot \lambda_v \vec{v} = \lambda_v \vec{u} \cdot \vec{v}$ Intuition

(م) د ما

(7)

The second eigenvector of C is called the second principal component.

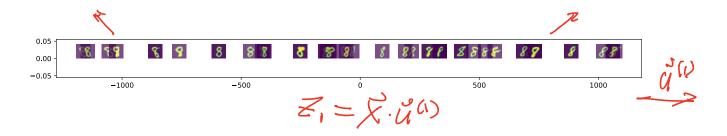
A Second Principal Component

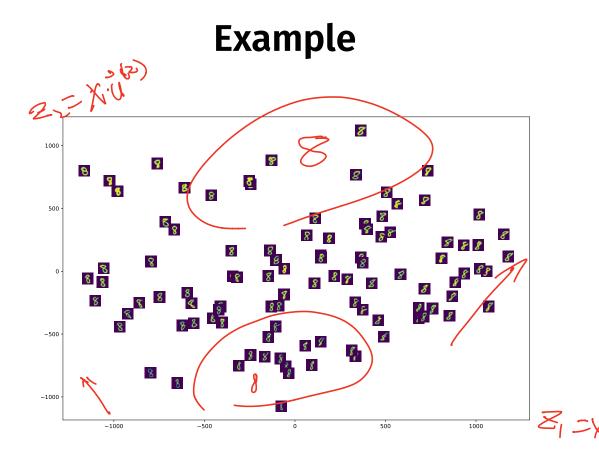
- ► Given a covariance matrix C.
- The principal component $\vec{u}^{(1)}$ is the top eigenvector of *C*.
 - Points in the direction of maximum variance.
- The second principal component u⁽²⁾ is the second eigenvector of C. I no "redundant"
 - Out of all vectors orthogonal to the principal component, points in the direction of max variance.

PCA: Two Components

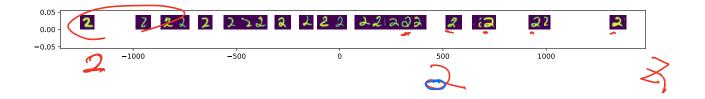
- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$.
- Compute covariance matrix C, top two eigenvectors $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^2 is $\vec{z} = (z_1, z_2)^T$, where:

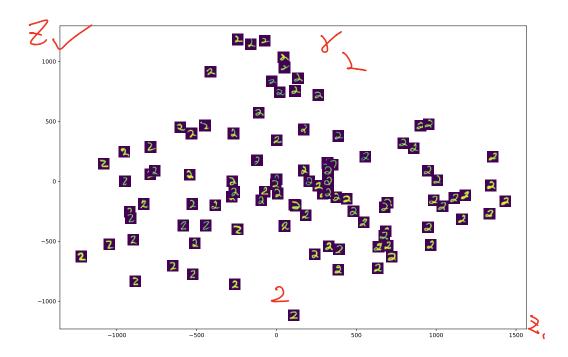
$$z_1 = \vec{x} \cdot \vec{u}^{(1)}$$
$$z_2 = \vec{x} \cdot \vec{u}^{(2)}$$

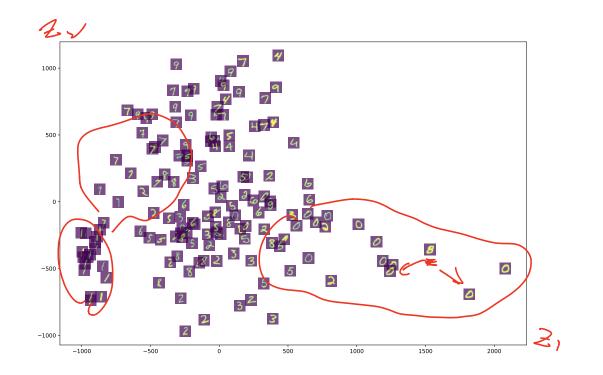




2(I)







PCA: *k* **Components**

- ► Given data $\{\vec{x}^{(1)}, ..., \vec{x}^{(n)}\} \in \mathbb{R}^d$, number of components k.
- Compute covariance matrix C, top $k \le d$ eigenvectors $\vec{u}^{(1)}$, $\vec{u}^{(2)}$, ..., $\vec{u}^{(k)}$.
- For any vector $\vec{x} \in \mathbb{R}$, its new representation in \mathbb{R}^k is $\vec{z} = (z_1, z_2, ..., z_k)^T$, where:

$$Z_{1} = \vec{X} \cdot \vec{u}^{(1)}$$

$$Z_{2} = \vec{X} \cdot \vec{u}^{(2)}$$

$$\vdots$$

$$Z_{k} = \vec{X} \cdot \vec{u}^{(k)}$$

Matrix Formulation λ^{-n}

Let X be the **data matrix** (n rows, d columns)

Let U be matrix of the k eigenvectors as columns (d rows, k columns)

 $g = \binom{N}{2}$

 $\mathcal{Z}_{ij} = \chi^{(v)} \cdot \tilde{\mu}^{(v)}$

► The new representation: *Z* = *XU*

DSC 140B Representation Learning

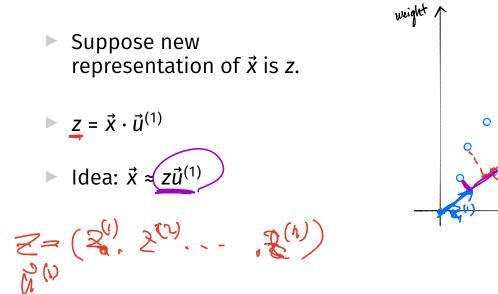
Lecture 11 | Part 2

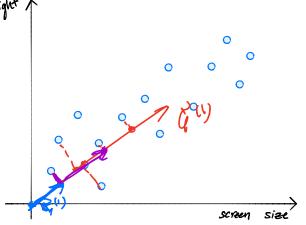
Reconstructions

Reconstructing Points

- PCA helps us reduce dimensionality from $\mathbb{R}^d \to \mathbb{R}^k$
- Suppose we have the "new" representation in \mathbb{R}^k .
- Can we "go back" to \mathbb{R}^d ?
- And why would we want to?

Back to \mathbb{R}^d





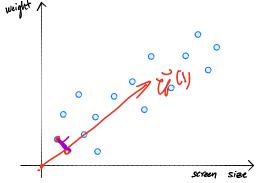
Reconstructions

► Given a "new" representation of \vec{x} , $\vec{z} = (z_1, ..., z_k) \in \mathbb{R}^k$ And top k eigenvectors, $\vec{u}_{k}^{(1)}, \dots, \vec{u}_{k}^{(k)}$ The **reconstruction** of \vec{x} is $z_1 \vec{u}^{(1)} + z_2 \vec{u}^{(2)} + \dots + z_k \vec{u}^{(k)} = \bigcup \vec{z}$

Reconstruction Error

- The reconstruction *approximates* the original point, \vec{x} .
- The **reconstruction error** for a single point, \vec{x} : $\|\vec{x} - U\vec{z}\|^2 \geq \vec{u}^{(0)}$
- Total reconstruction error:

$$\begin{array}{ccc}
m_{i} n & \sum_{i=1}^{n} \|\vec{x}^{(i)} - U\vec{z}^{(i)}\|^{2} \\
\mu & \mu \\
\mu & \mu$$



DSC 140B Representation Learning

Lecture 11 | Part 3

Interpreting PCA

Three Interpretations

- ▶ What is PCA doing?
- ► Three interpretations:
 - 1. Mazimizing variance
 - 2. Finding the best reconstruction
 - 3. Decorrelation

Recall: Matrix Formulation

Z = X U

Given data matrix X.

Compute new data matrix Z = XU.

PCA: choose U to be matrix of eigenvectors of C.

 For now: suppose U can be anything – but columns should be orthonormal
 Orthonormal = "not redundant"

View #1: Maximizing Variance

- This was the view we used to derive PCA
- Define the **total variance** to be the sum of the variances of each column of $Z = \chi \bigcup_{z \in Z} Z$
- Claim: Choosing U to be top eigenvectors of C maximizes the total variance among all choices of orthonormal U.

Main Idea

PCA maximizes the total variance of the new data. I.e., chooses the most "interesting" new features which are not redundant.

View #2: Minimizing Reconstruction Error

Recall: total reconstruction error

$$\sum_{i=1}^{n} \|\vec{x}^{(i)} - U\vec{z}^{(i)}\|^2$$

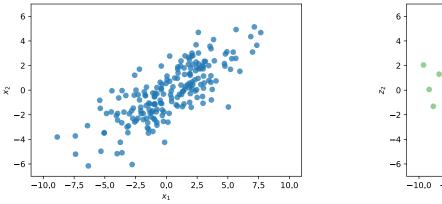
- ► Goal: minimize total reconstruction error.
- Claim: Choosing U to be top eigenvectors of C minimizes reconstruction error among all choices of orthonormal U

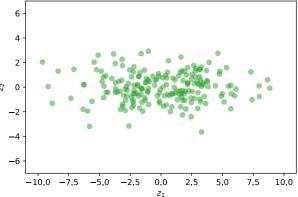
Main Idea

PCA minimizes the reconstruction error. It is the "best" projection of points onto a linear subspace of dimensionality k. When k = d, the reconstruction error is zero.

View #3: Decorrelation

PCA has the effect of "decorrelating" the features.





Main Idea

PCA learns a new representation by rotating the data into a basis where the features are uncorrelated (not redundant). That is: the natural basis

vectors are the principal directions (eigenvectors of the covariance matrix). PCA changes the basis to this natural basis.

USC 140B Representation Learning

Lecture 11 | Part 4

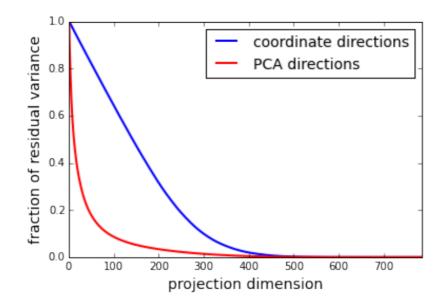
PCA in Practice

PCA in Practice

- PCA is often used in preprocessing before classifier is trained, etc.
- Must choose number of dimensions, k.
- One way: cross-validation.
- Another way: the elbow method.

Total Variance

- The total variance is the sum of the eigenvalues of the covariance matrix.
- Or, alternatively, sum of variances in each orthogonal basis direction.



Caution

- PCA's assumption: variance is interesting
- PCA is totally unsupervised
- The direction most meaningful for classification may not have large variance!