DEC $140 B$
Representation Learning Lecture $12 \mid$ Part 1
Interpreting PCA

Three Interpretations

- What is PCA doing?
- Three interpretations:

1. Mazimizing variance
2. Finding the best reconstruction
3. Decorrelation

Recall: Matrix Formulation

- Given data matrix X.
- Compute new data matrix $Z=X U$.
- PCA: choose U to be matrix of eigenvectors of C.
- For now: suppose U can be anything - but columns should be orthonormal
- Orthonormal = "not redundant"

View \#1: Maximizing Variance

- This was the view we used to derive PCA
- Define the total variance to be the sum of the variances of each column of Z.
- Claim: Choosing U to be top eigenvectors of C maximizes the total variance among all choices of orthonormal U.

Main Idea

PCA maximizes the total variance of the new data. l.e., chooses the most "interesting" new features which are not redundant.

View \#2: Minimizing Reconstruction Error

- Recall: total reconstruction error

$$
\sum_{i=1}^{n}\left\|\vec{X}^{(i)}-U \vec{z}^{(i)}\right\|^{2}
$$

- Goal: minimize total reconstruction error.
- Claim: Choosing U to be top eigenvectors of C minimizes reconstruction error among all choices of orthonormal U

Main Idea

PCA minimizes the reconstruction error. It is the "best" projection of points onto a linear subspace of dimensionality k. When $k=d$, the reconstruction error is zero.

View \#3: Decorrelation

- PCA has the effect of "decorrelating" the features.

Main Idea

PCA learns a new representation by rotating the data into a basis where the features are uncorrelated (not redundant). That is: the natural basis vectors are the principal directions (eigenvectors of the covariance matrix). PCA changes the basis to this natural basis.

$$
\text { DEC } 140 B
$$

Representation Learning Lecture $12 \mid$ Part 2

PCA in Practice

- PCA is often used in preprocessing before classifier is trained, etc.
- Must choose number of dimensions, k.
- One way: cross-validation.
- Another way: the elbow method.

Total Variance

- The total variance is the sum of the eigenvalues of the covariance matrix.
- Or, alternatively, sum of variances in each orthogonal basis direction.

Caution

- PCA's assumption: variance is interesting
- PCA is totally unsupervised
- The direction most meaningful for classification may not have large variance!

DEC $140 B$ Representation Learning Lecture $12 \mid$ Part 3
Nonlinear Dimensionality Reduction

Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?

PCA?

Does PCA work here?

- Try projecting onto one principal component.

No

PCA?

- PCA simply "rotates" the data.
- No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.

Today

Non-linear dimensionality reduction via spectral embeddings.

Rethinking Dimensionality

\Rightarrow Each point is an (x, y) coordinate in two dimensional space

- But the structure is one-dimensional
- Could (roughly) locate point using one number: distance from end.

Rethinking Dimensionality

Rethinking Dimensionality

Rethinking Dimensionality

- Informally: data expressed with d dimensions, but its really confined to k-dimensional region
- This region is called a manifold
- d is the ambient dimension
- k is the intrinsic dimension

Example

Ambient dimension: 2

- Intrinsic dimension: 1

Example

Ambient dimension: 3

- Intrinsic dimension: 2

Example

Ambient dimension:

- Intrinsic dimension:

Manifold Learning

Given: data in high dimensions

- Recover: the low-dimensional manifold

Types of Manifolds

- Manifolds can be linear
- E.g., linear subpaces - hyperplanes
- Learned by PCA
- Can also be non-linear (locally linear)
- Example: the spiral data
- Learned by Laplacian eigenmaps, among others

Euclidean vs. Geodesic Distances

- Euclidean distance: the "straight-line" distance
- Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

- Euclidean distance: the "straight-line" distance
- Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

- If data is close to a linear manifold, geodesic \approx Euclidean
- Otherwise, can be very different

Non-Linear Dimensionality Reduction

- Goal: Map points in \mathbb{R}^{d} to \mathbb{R}^{k}
- Such that: if \vec{x} and \vec{y} are close in geodesic distance in \mathbb{R}^{d}, they are close in Euclidean distance in \mathbb{R}^{k}

Embeddings

DST $140 B$
Representation Learning Lecture 12 | Part 4
Embedding Similarities

Similar Netflix Users

- Suppose you are a data scientist at Netflix
- You're given an $n \times n$ similarity matrix W of users
$>$ entry (i, j) tells you how similar user i and user j are
> 1 means "very similar", 0 means "not at all"
- Goal: visualize to find patterns

Idea

- We like scatter plots. Can we make one?
- Users are not vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

$$
\begin{array}{ccc}
A \\
B \\
C
\end{array}\left(\begin{array}{ccc}
A & B & C \\
1 & 0.1 & 0.2 \\
0.1 & 1 & 0.7 \\
0.2 & 0.7 & 1
\end{array}\right)
$$

Goal

- Embed nodes of a similarity graph as points.
- Similar nodes should map to nearby points.

Today

- We will design a graph embedding approach:
- Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
- A similarity graph with n nodes
- a number of dimensions, k
- Compute: an embedding of the n points into \mathbb{R}^{k} so that similar objects are placed nearby

To Start

- Given:
- A similarity graph with n nodes

Compute: an embedding of the n points into \mathbb{R}^{1} so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^{1}

- Suppose we have n nodes (objects) to embed
\Rightarrow Assume they are numbered $1,2, \ldots, n$
\Rightarrow Let $f_{1}, f_{2}, \ldots, f_{n} \in \mathbb{R}$ be the embeddings
We can pack them all into a vector: \vec{f}.
$>$ Goal: find a good set of embeddings, \vec{f}.

Example

$$
\vec{f}=(1,3,2,-4)^{\top}
$$

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- Step 2: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

- Idea: cost is low if similar points are close
- Here is one approach:

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

> where $w_{i j}$ is the weight between i and j.

Interpreting the Cost

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

- If $w_{i j} \approx 0$, that pair can be placed very far apart without increasing cost
\Rightarrow If $w_{i j} \approx 1$, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Hint: what embedding \vec{f} minimizes it?

Problem

- The cost is always minimized by taking $\vec{f}=0$.
- This is a "trivial" solution. Not useful.
- Fix: require $\|\vec{f}\|=1$
- Really, any number would work. 1 is convenient.

Exercise

Do you see another problem with the cost function, even if we require \vec{f} to be a unit vector?

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Hint: what other choice of \vec{f} will always make this zero?

Problem

- The cost is always minimized by taking $\vec{f}=\frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{\top}$.
- This is a "trivial" solution. Again, not useful.
- Fix: require \vec{f} to be orthogonal to $(1,1, \ldots, 1)^{\top}$.
- Written: $\vec{f} \perp(1,1, \ldots, 1)^{\top}$
- Ensures that solution is not close to trivial solution
- Might seem strange, but it will work!

The New Optimization Problem

- Given: an $n \times n$ similarity matrix W
- Compute: embedding vector \vec{f} minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

How?

- This looks difficult.
- Let's write it in matrix form.
- We'll see that it is actually (hopefully) familiar.

