
Lecture 13 | Part 1

Embedding Similarities

Similar Netflix Users

▶ Suppose you are a data scientist at Netflix

▶ You’re given an 𝑛 × 𝑛 similarity matrix 𝑊 of users
▶ entry (𝑖, 𝑗) tells you how similar user 𝑖 and user 𝑗 are
▶ 1 means “very similar”, 0 means “not at all”

▶ Goal: visualize to find patterns

Idea

▶ We like scatter plots. Can we make one?

▶ Users are not vectors / points!

▶ They are nodes in a similarity graph

Similarity Graphs
▶ Similarity matrices can be thought of as weighted graphs,
and vice versa.

Goal
▶ Embed nodes of a similarity graph as points.
▶ Similar nodes should map to nearby points.

Today

▶ We will design a graph embedding approach:
▶ Spectral embeddings via Laplacian eigenmaps

More Formally

▶ Given:
▶ A similarity graph with 𝑛 nodes
▶ a number of dimensions, 𝑘

▶ Compute: an embedding of the 𝑛 points into ℝ𝑘
so that similar objects are placed nearby

To Start

▶ Given:
▶ A similarity graph with 𝑛 nodes

▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

Vectors as Embeddings into ℝ1

▶ Suppose we have 𝑛 nodes (objects) to embed

▶ Assume they are numbered 1, 2, ..., 𝑛

▶ Let 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ be the embeddings

▶ We can pack them all into a vector: ⃗𝑓.

▶ Goal: find a good set of embeddings, ⃗𝑓.

Example

⃗𝑓 = (1, 3, 2, −4)𝑇

An Optimization Problem

▶ We’ll turn it into an optimization problem:

▶ Step 1: Design a cost function quantifying how
good a particular embedding ⃗𝑓 is

▶ Step 2: Minimize the cost

Example

▶ Which is the best embedding?

Cost Function for Embeddings

▶ Idea: cost is low if similar points are close

▶ Here is one approach:

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ where 𝑤𝑖𝑗 is the weight between 𝑖 and 𝑗.

Interpreting the Cost

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ If 𝑤𝑖𝑗 ≈ 0, that pair can be placed very far apart
without increasing cost

▶ If 𝑤𝑖𝑗 ≈ 1, the pair should be placed close
together in order to have small cost.

Exercise

Do you see a problem with the cost function?

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what embedding ⃗𝑓 minimizes it?

Problem

▶ The cost is always minimized by taking ⃗𝑓 = 0.

▶ This is a “trivial” solution. Not useful.

▶ Fix: require ‖ ⃗𝑓‖ = 1
▶ Really, any number would work. 1 is convenient.

Exercise

Do you see another problemwith the cost function,
even if we require ⃗𝑓 to be a unit vector?

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what other choice of ⃗𝑓 will always make this
zero?

Problem

▶ The cost is always minimized by taking
⃗𝑓 = 1

√𝑛
(1, 1, … , 1)𝑇.

▶ This is a “trivial” solution. Again, not useful.

▶ Fix: require ⃗𝑓 to be orthogonal to (1, 1, … , 1)𝑇.
▶ Written: ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
▶ Ensures that solution is not close to trivial solution
▶ Might seem strange, but it will work!

The New Optimization Problem

▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

How?

▶ This looks difficult.

▶ Let’s write it in matrix form.

▶ We’ll see that it is actually (hopefully) familiar.

Lecture 13 | Part 2

The Graph Laplacian

The Problem

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

▶ Now: write the cost function as a matrix
expression.

The Degree Matrix

▶ Recall: in an unweighted graph, the degree of
node 𝑖 equals number of neighbors.

▶ Equivalently (where 𝐴 is the adjacency matrix):

degree(𝑖) =
𝑛

∑
𝑗=1
𝐴𝑖𝑗

▶ Since 𝐴𝑖𝑗 = 1 only if 𝑗 is a neighbor of 𝑖

The Degree Matrix

▶ In a weighted graph, define degree of node 𝑖
similarly:

degree(𝑖) =
𝑛

∑
𝑗=1
𝑤𝑖𝑗

▶ That is, it is the total weight of all neighbors.

The Degree Matrix

▶ The degree matrix 𝐷 of a weighted graph is the
diagonal matrix where entry (𝑖, 𝑖) is given by:

𝑑𝑖𝑖 = degree(𝑖)

=
𝑛

∑
𝑗=1
𝑤𝑖𝑗

The Graph Laplacian

▶ Define 𝐿 = 𝐷 − 𝑊
▶ 𝐷 is the degree matrix
▶ 𝑊 is the similarity matrix (weighted adjacency)

▶ 𝐿 is called the Graph Laplacian matrix.

▶ It is a very useful object

Very Important Fact

▶ Claim:

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 = ⃗𝑓𝑇𝐿 ⃗𝑓

▶ Proof: expand both sides 1

1Note that there was originally a 1
2 in front of ⃗𝑓𝑇𝐿 ⃗𝑓, but this was not

correct as written. See Problem 06 in the Midterm 02 practice for a longer
explanation.

Proof

