Representation Learning

Lecture 13 | Part 1

Embedding Similarities

Similar Netflix Users

Suppose you are a data scientist at Netflix

- You're given an n × n similarity matrix W of users
 entry (i, j) tells you how similar user i and user j are
 1 means "very similar", 0 means "not at all"
- ► Goal: visualize to find patterns

Idea

- We like scatter plots. Can we make one?
- Users are **not** vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

Goal

Embed nodes of a similarity graph as points.
 Similar nodes should map to nearby points.

Today

We will design a graph embedding approach:
 Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
 - A similarity graph with n nodes
 - a number of dimensions, k
- Compute: an embedding of the n points into R^k so that similar objects are placed nearby

To Start

Given:

A similarity graph with n nodes

Compute: an embedding of the n points into R¹ so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^1

- Suppose we have *n* nodes (objects) to embed
- Assume they are numbered 1, 2, ..., n
- ▶ Let $f_1, f_2, ..., f_n \in \mathbb{R}$ be the embeddings
- We can pack them all into a vector: \vec{f} .
- Goal: find a good set of embeddings, \vec{f} .

Example

$$\vec{f} = (1, 3, 2, -4)^T$$

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- **Step 2**: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

Idea: cost is low if similar points are close

Here is one approach:

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

• where w_{ij} is the weight between *i* and *j*.

Interpreting the Cost

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

- If w_{ij} ≈ 0, that pair can be placed very far apart without increasing cost
- If w_{ij} ≈ 1, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

Hint: what embedding \vec{f} minimizes it?

Problem

- The cost is **always** minimized by taking $\vec{f} = 0$.
- This is a "trivial" solution. Not useful.
- Fix: require $\|\vec{f}\| = 1$
 - Really, any number would work. 1 is convenient.

Exercise

Do you see **another** problem with the cost function, even if we require \vec{f} to be a unit vector?

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

Hint: what other choice of \vec{f} will **always** make this zero?

Problem

- The cost is **always** minimized by taking $\vec{f} = \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$.
- ► This is a "**trivial**" solution. Again, not useful.
- Fix: require \vec{f} to be orthogonal to $(1, 1, ..., 1)^T$.
 - Written: $\vec{f} \perp (1, 1, ..., 1)^T$
 - Ensures that solution is not close to trivial solution
 - Might seem strange, but it will work!

The New Optimization Problem

▶ **Given**: an *n* × *n* similarity matrix W

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

How?

- This looks difficult.
- Let's write it in matrix form.
- We'll see that it is actually (hopefully) familiar.

DSC 140B Representation Learning

Lecture 13 | Part 2

The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

Now: write the cost function as a matrix expression.

The Degree Matrix

- Recall: in an unweighted graph, the degree of node *i* equals number of neighbors.
- Equivalently (where A is the adjacency matrix):

degree(i) =
$$\sum_{j=1}^{n} A_{ij}$$

Since A_{ij} = 1 only if j is a neighbor of i

The Degree Matrix

In a weighted graph, define degree of node i similarly:

degree(*i*) =
$$\sum_{j=1}^{n} w_{ij}$$

That is, it is the total weight of all neighbors.

The Degree Matrix

The degree matrix D of a weighted graph is the diagonal matrix where entry (i, i) is given by:

$$d_{ii} = \text{degree}(i)$$

= $\sum_{j=1}^{n} w_{ij}$

The Graph Laplacian

- ▶ Define L = D W
 - D is the degree matrix
 - W is the similarity matrix (weighted adjacency)
- L is called the Graph Laplacian matrix.
- It is a very useful object

Very Important Fact

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \vec{f}^T L \vec{f}$$

Proof: expand both sides ¹

¹Note that there was originally a $\frac{1}{2}$ in front of $\vec{f}^T L \vec{f}$, but this was not correct as written. See Problem 06 in the Midterm 02 practice for a longer explanation.

Proof