psC /140&

Represaitaton [earm@

Lecture 15 Part 1

Solving the Optimization Problem

A New Formulation

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing
Cost(f) = 2 f'Lf

subjectto [|f|| =1and f L (1,1,...,1)T

This might sound familiar...

Recall: PCA

Given: a d x d covariance matrix C

Find: vector & maximizing the variance in the
direction of u:
u'ci

subject to ||d]| = 1.

Solution: take U = top eigenvector of C

A New Formulation
Forget about orthogonality constraint for now.
Compute: embedding vector fminimizing
Cost(f) = fTLf
subject to ||f|| = 1.

Solution: the bottom eigenvector of L.
That is, eigenvector with smallest eigenvalue.

Claim

The bottom eigenvector is f = ﬁ(t 1,0, DT

It has associated eigenvalue of 0.

- -

Thatis, Lf = 0f = 0

Spectral' Theorem

Theorem

If A is a symmetric matrix, eigenvectors of A with
distinct eigenvalues are orthogonal to one another.

T“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”

The Fix

Remember: we wanted fto be orthogonal to

1 T
ﬁ(1,1,...,1).

l.e., should be orthogonal to bottom eigenvector of L.

Fix: take fto the be eigenvector of L with with
smallest eigenvalue # 0.

Will be L ﬁ“’ 1,...,1)T by the spectral theorem.

Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector fminimizing

wy(f; - £, = 3 fILf

.

n
:1 j

1217 Cost(f) = n
; 2.2

subject to ||fll =1and f L (1,1,..., 1)

N—_— h]

Spectral Embeddings: Solution

Form the graph Laplacian matrix, L=D - W

Choosejfb an eigenvector of L with
eigenvalu @

—

This is the embedding!
—_— >

Example

W = np.array([
- [1, 0.1, 0.2],
[0.1, 1, 0.7],
[06.2, 0.7, 1]
1)
D = np.diag(W.sum(axis=1))
L=D-W
-

vals, vecs = np.linalg.eigh(L)

@ Vecs[:,lw

> AN >
’E’@ Qhks

Embedding into R*
This embeds nodes into R'.
What about embedding into Rk? 7{(4 OQ

Natural extension: find bottom k eigenvectors
with eigenvalues > 0

New Coordinates

With k eigenvectors fM, @ . f® each node is
mapped to a point in R~ J .
C\@Mﬂbtl) = <~f.0) .FM .

\ , Ny

Consider node |. i b
First new coordinate is f{". jfc >
Second new coordinate is £ $ >
Third new coordinate is f©.

Example

//’;;:jnp.array([
[1, 0.1, 0.2],

[0.1, 1, 0.7],
[0.2, 0.7, 1]

1)
D = np.diag(W.sum(axis=1))
L=D-W

vals, vecs = np.linalg.eigh(L)
Y

take two eigenvectors

to map to R"2
f = vecs[:,1:3] =2 Ll

Example

Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin? and Partha Niyogi

It is a type of spectral embedding

Now at HDSI

A Practical Issue jﬁ J

The Laplacian is often@ 0“
0t

Lnorm =D" 1/2LD ' L .
whe@ls the diagonal matrix whose 5
diagonal entry is 1 ,/d,
g y / I [’mvmu \ﬂw WQ_FX

Proceed by finding the eigenvectors of L ;...

In Summary

We can embed a similarity graph’s nodes into R*
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction

pDsC /14o0&

Represaitaton [earm@

Lecture 15 Part 2

Nonlinear Dimensionality Reduction

Scenario

You want to train a
classifier on this data.

It would be easier if we

could “unroll” the spiral. a

Data seems to be

one-dimensional, even "o

though in two dimensions.

Dimensionality reduction?

PCA?
Does PCA work here?

Try projecting onto one principal component.

No

@ 2@ @ CEED NN G) e W

PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.

Today

Non-linear dimensionality reduction via
spectral embeddings.

Last Time: Spectral Embeddings

Given: a similarity graph with n nodes, number
of dimensions R.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom kR non-constant eigenvectors of
graph Laplacian

Idea

Build a similarity graph
from points.

Points near the spiral
hould be similar.

Embed the similarity
graph into R’

Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps

pDsC /14o0&

Represaitaton [earm@

Lecture 15 Part3

From Points to Graphs

Dimensionality Reduction

Given: n points in RY, number of dimensions
(k3 d

Map: each point X to new representation Z € R¥

Idea J
s

Build a similarity graph from points in R?

//‘\

Use approach from last lecture to embed into R"

But how do we represent a set of points as a
similarity graph?

Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function

Epsilon Neighbors Graph

(P
Input: vectors X, ..., X",

a numbe@ \
bl
Create a graph with one - ,é“

node i per point Xt

Add edge between esi
and j if | X0 - X0

P—

Result: unweighted graph

What will the graph look like when € is small? What
about when it is large?

Epsilon Neighbors Graph C st

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Ne=—~Z

=
(P57
&

</l
A
=7

lon Neighbors Graph © FQ”J%

Epsi

Note

We've drawn these graphs by placing nodes at
the same position as the point they represent

But a graph’s nodes can be drawn in any way

Epsilon Nelghbor§ Pseudocode
(NS

assume the data is 1in X
n = len(X)
adJ = np.zeros like(X)

fof i 1n-?gﬁ§ETHT‘“

for j in r (n):
iﬁ:ﬁigigﬁﬁgbx[i], X[j]) <= epsilon:

adj[1, j] =1 -

Picking ¢
If € Is too small, graph is underconnected
If € Is too large, graph is overconnected

If you cannot visualize, just try and see

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.radius_neighbors_graph(
X, —
radius=...

k-Neighbors Graph

Input: vectors XV, ..., X,
a number R

Create a graph with one
node i per point X\

Add edge between each
node i and its k closest
neighbors

Result: unweighted graph

k-Neighbors: Pseudocode

assume the data is in X
n = len(X)
adj = np.zeros_like(X)

fo(:% in range(n):
or j in k_closest_neighbors(X, i):

adj[i, J] =1

Is it possible for a kR-neighbors graph to be dis-
conected?

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X,
n_neighbors=...

Fully Connected Graph

Input: vectors X, ..., X", _ ﬂu%mo@
a similarity function h

Create a graph with one
node i per point X\

Add edge between every

pair of nodes. Assign~
weight of AR, X)__—
e — iy

Result: weighted graph

TR T e

AT TR T
—)]

smal &
Gaussian Similarity j

—

A common similarity function: Gaussian
(_/_\/\

Must choose o appropriately

(X,) = e Ix3l/c?

=2\

T

Fully Connected: Pseudocode

ef h():
dist = np.linalg.norm(x, vy)
return np.exp(-dist**2 / sigma*=*2)
assume the data is in X >K;‘? nAcd
n = len(ﬁ) ,
w = np.oRss=kikel) ones((1,1)) W nxm

for 1 in range(n):
for j in range(n):
wli, j1 = h(X[i], X[31)

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances*#2 / sigma##2)

Gaussian Similarity

Gaussian Similarity

ilarity

imi

Gaussian S

ilarity

imi

Gaussian S

pDsC /14o0&

Represaitaton [earm@

Lecture 15 Part 4

Laplacian Eigenmaps

Idea

Build a similarity graph from points in R?

epsilon neighbors, k-neighbors, or W

Now: use approach from last lecture to embed
into R¥

|

Ira

° e ~,
D Ooo‘o %
(Vg *) Y
® \\oo .ooo - "
) & o s e T

Example 1
"

Example 1: Spiral
Build a R-neighbors graph.
Note: follows the 1-d shape of the data.

=9
'S e
8,
y A A
= 4 o9 A
;- b
J N
&
y \
S
[» y I
Y)\ !
. ;
. o
8,
" | . b4
\ L
A\ b

Rl

Example 1: Spectral Embedding

Let W be the weight matrix (R-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding

Example 1: Spiral

Embedding into R’

Example 1: Spiral

Embedding into R?

Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

) —_—

embedding = sklearn.manifold.spectral_embedding(
W, n_components= — T

)

Example 2: Face Pose

B A s i B
Ca B o Be P g
> B Gy B9 P
P [B0 B s €0
NN N
B G B s B B
KO G B > B B
pa 50 O B o
aldTld T
P B B 6 € B

Example 2: Face Pose

Construct fully-connected similarity graph with

Gaussian similarity
S)

Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

psC /140&

Represaitaton [earmg

Lecture 15 Part5h

Spectral Clustering

Spectral Embeddings

Useful in multiple tasks:
Feature learning before classification
Visualizing high dimensional data
Clustering

Spectral Clustering

Problem: k-means assumptions:
Data are vectors (what about graphs?)
Clusters are spherical (what about more complex
patterns?)

One idea:
Embed using, e.g., Laplacian eigenmaps
Run k-means on the embedded points

Demo

