DSC 140B Representation Learning

Lecture 15 | Part 1

Solving the Optimization Problem

A New Formulation

- ► **Given**: an *n* × *n* similarity matrix *W*
- **Compute**: embedding vector \vec{f} minimizing

$$\operatorname{Cost}(\vec{f}) = \frac{1}{2}\vec{f}^{\mathsf{T}}L\vec{f}$$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

► This might sound familiar...

Recall: PCA

- ► **Given**: a *d* × *d* covariance matrix *C*
- Find: vector \vec{u} maximizing the variance in the direction of \vec{u} :

ū[⊤]Cū

subject to $\|\vec{u}\| = 1$.

Solution: take \vec{u} = top eigenvector of C

A New Formulation

Forget about orthogonality constraint for now.

• **Compute**: embedding vector \vec{f} **minimizing**

$$Cost(\vec{f}) = \frac{1}{2}\vec{f}^T L\vec{f}$$

subject to $\|\vec{f}\| = 1$.

Solution: the *bottom* eigenvector of *L*.
 That is, eigenvector with smallest eigenvalue.

Claim

• The bottom eigenvector is
$$\vec{f} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$$

It has associated eigenvalue of 0.

That is,
$$L\vec{f} = 0\vec{f} = \vec{0}$$

Spectral¹ **Theorem**

Theorem

If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

¹"Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

The Fix

- ▶ Remember: we wanted f to be orthogonal to ¹/_{√n}(1, 1, ..., 1)^T.

 ▶ i.e., should be orthogonal to bottom eigenvector of L.
- Fix: take \vec{f} to the be eigenvector of *L* with with
- smallest eigenvalue ≠ 0.

► Will be $\perp \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$ by the **spectral theorem**.

Spectral Embeddings: Problem

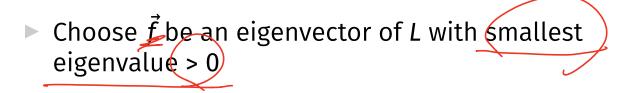
- Given: similarity graph with n nodes
- Compute: an embedding of the n points into R¹ so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

$$\int_{i=1}^{n} Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2 = \frac{1}{2} \vec{f} (L\vec{f})$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

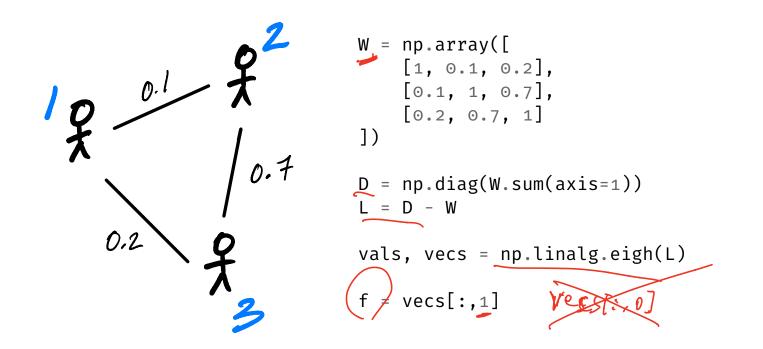
Spectral Embeddings: Solution

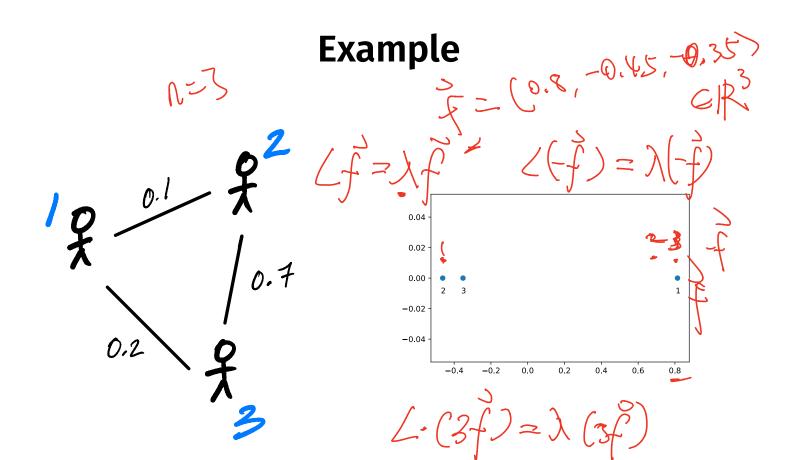
► Form the **graph Laplacian** matrix, *L* = *D* – *W*



This is the embedding!

Example





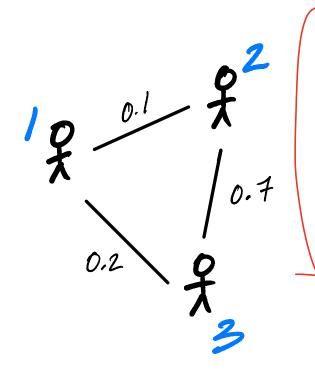
Embedding into \mathbb{R}^k

- This embeds nodes into \mathbb{R}^1 .
- What about embedding into \mathbb{R}^{k_2} $k \leq 0$.
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

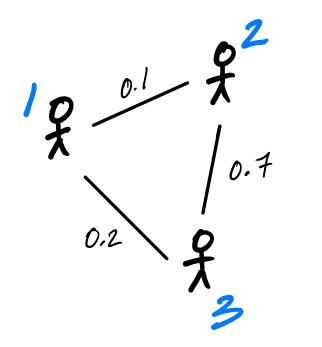
- ▶ With *k* eigenvectors $\vec{f}^{(1)}$, $\vec{f}^{(2)}$, ..., $\vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^k . Eendding $(i) = (f_{i}^{(i)}, f_{i}^{(2)})$
- Consider node i.
 - First new coordinate is $\vec{f}_i^{(1)}$.
 - Second new coordinate is $\vec{f}_i^{(2)}$.
 - Third new coordinate is $\vec{f}_i^{(3)}$.

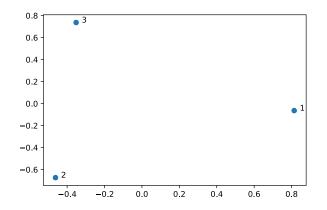
Example



<pre>W = np.array([[1, 0.1, 0.2], [0.1, 1, 0.7], [0.2, 0.7, 1]])</pre>
D = np.diag(W.sum(axis=1)) L = D - W
vals, vecs = np.linalg.eigh(L)
take two eigenvectors # to map to R^2 f = vecs[:,1:3] $\Rightarrow R \times 2$.

Example





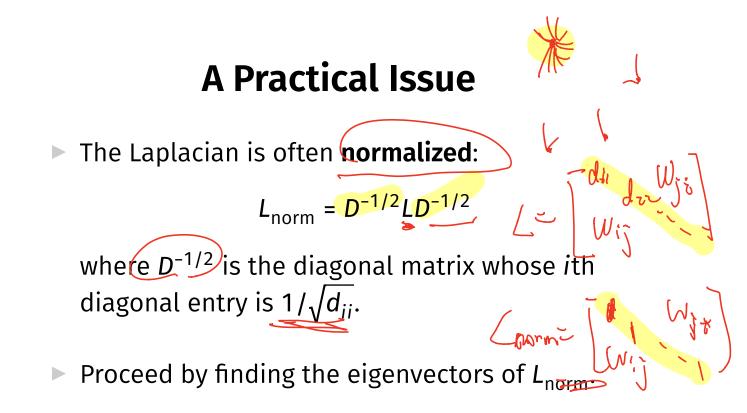
Laplacian Eigenmaps

This approach is part of the method of "Laplacian eigenmaps"

▶ Introduced by Mikhail Belkin² and Partha Niyogi

It is a type of spectral embedding

²Now at HDSI



In Summary

- We can **embed** a similarity graph's nodes into R^k using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction

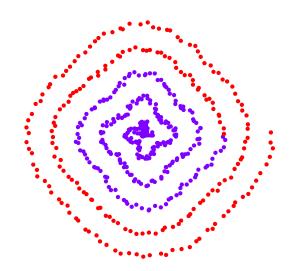
DSC 140B Representation Learning

Lecture 15 | Part 2

Nonlinear Dimensionality Reduction

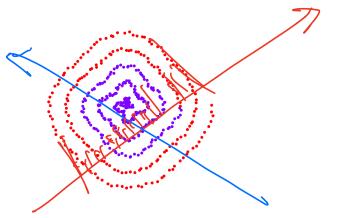
Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?



PCA?

- Does PCA work here?
- Try projecting onto one principal component.



No

PCA?

PCA simply "rotates" the data.

▶ No amount of rotation will "unroll" the spiral.

We need a fundamentally different approach that works for non-linear patterns.

Today

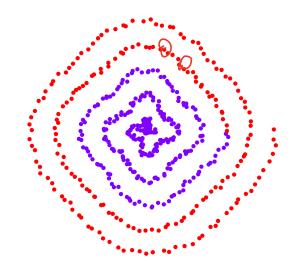
Non-linear dimensionality reduction via spectral embeddings.

Last Time: Spectral Embeddings

- Given: a similarity graph with n nodes, number of dimensions k.
- Embed: each node as a point in R^k such that similar nodes are mapped to nearby points
- Solution: bottom k non-constant eigenvectors of graph Laplacian

Idea

- Build a similarity graph from points.
 - Points *near the spiral* should be similar.
- Embed the similarity graph into R¹



Today

- ▶ 1) How do we build a graph from a set of points?
- 2) Dimensionality reduction with Laplacian eigenmaps

DSC 140B Representation Learning

Lecture 15 | Part 3

From Points to Graphs

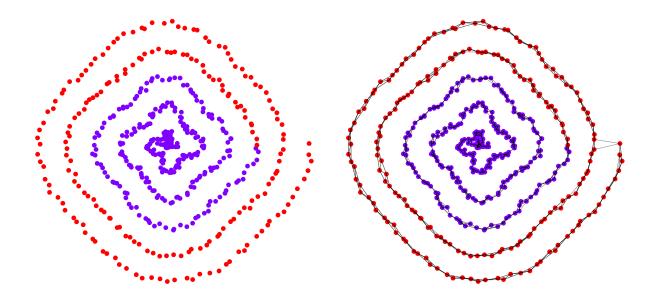
Dimensionality Reduction

- **Given**: *n* points in \mathbb{R}^d , number of dimensions $R \not\ge d$
- ▶ **Map**: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^k$

Idea▶ Build a similarity graph from points in R2

- ▶ Use approach from last lecture to embed into \mathbb{R}^k
- But how do we represent a set of points as a similarity graph?

Why graphs?



Three Approaches

- ▶ 1) Epsilon neighbors graph
- > 2) *k*-Nearest neighbor graph
- ▶ 3) fully connected graph with similarity function

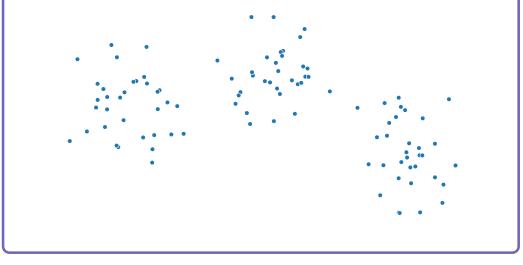
Epsilon Neighbors Graph

オンン

- Input: vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}, \dots$ a number ε
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between nodes *i* and *j* if $\|\vec{x}^{(i)} - \vec{x}^{(j)}\| \leq \varepsilon$
- Result: unweighted graph

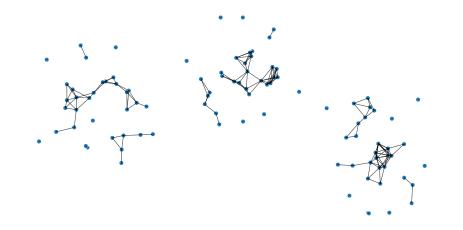
Exercise

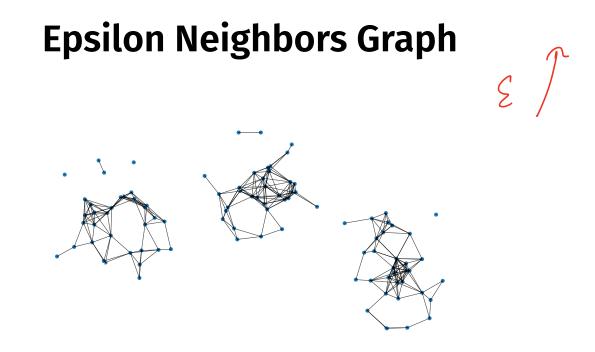
What will the graph look like when ε is small? What about when it is large?



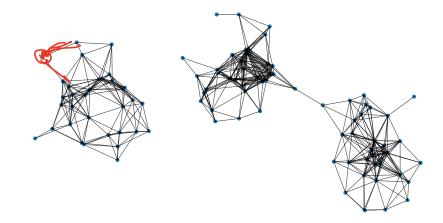
Epsilon Neighbors Graph

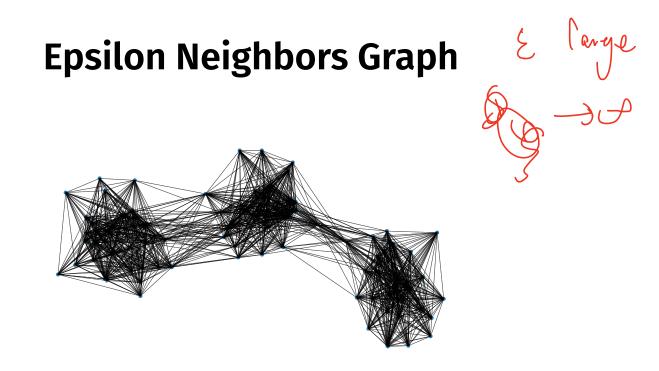
E Small





Epsilon Neighbors Graph





Note

- We've drawn these graphs by placing nodes at the same position as the point they represent
- But a graph's nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in range(n):
        if distance(X[i], X[j]) <= epsilon:
            adj[i, j] = 1</pre>
```

Picking ε

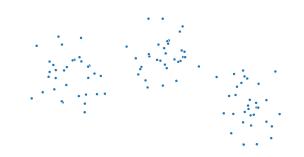
• If ε is too small, graph is underconnected

• If ε is too large, graph is overconnected

If you cannot visualize, just try and see

With scikit-learn

- Input: vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}, \dots$ a number k
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

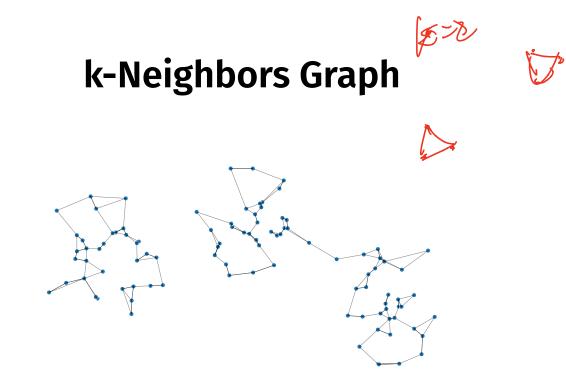


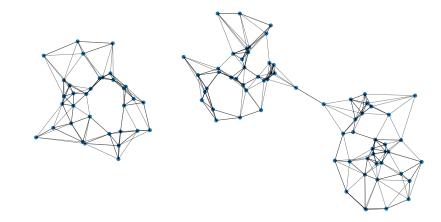
k-Neighbors: Pseudocode

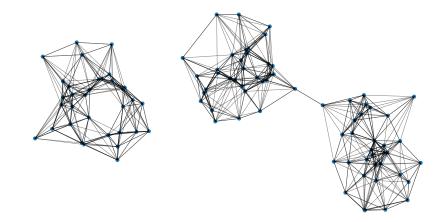
```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in k_closest_neighbors(X, i):
        adj[i, j] = 1
```

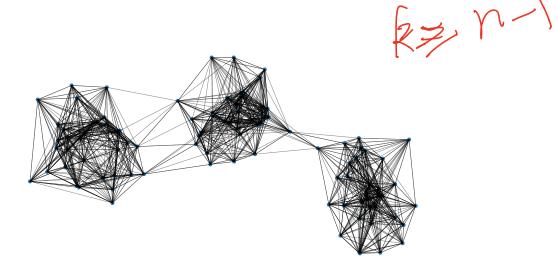
Exercise

Is it possible for a *k*-neighbors graph to be disconected?







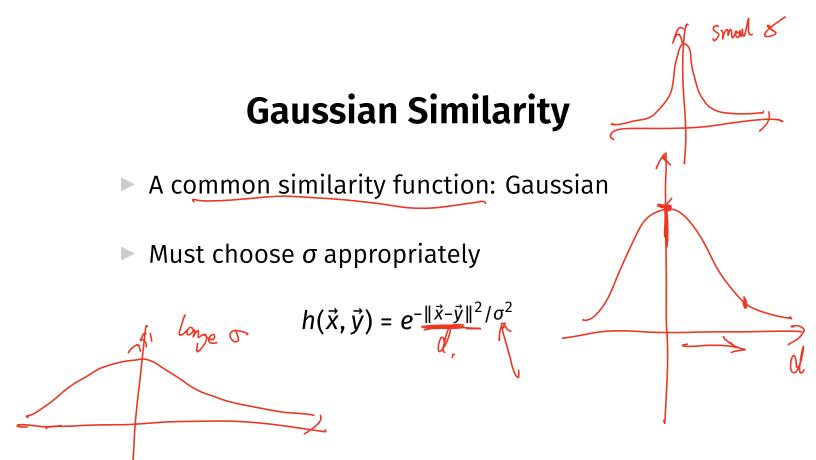


With scikit-learn

Fully Connected Graph

- ► Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)},$ a similarity function *h*
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between every pair of nodes. Assign weight of $h(\vec{x}^{(i)}, \vec{x}^{(j)})$
- Result: weighted graph

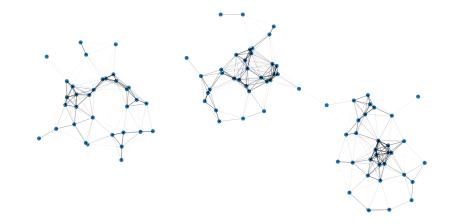
- diggemce

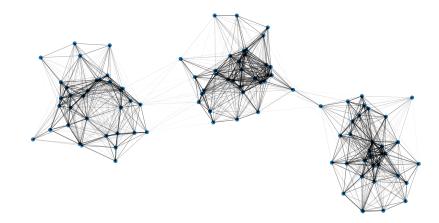


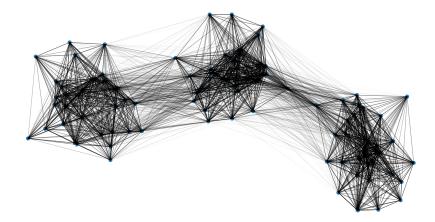
Fully Connected: Pseudocode $def_h(x.$ dist = np.linalg.norm(x, y) return np.exp(-dist**2 / sigma**2) $\chi = n_{x0}$ $W = n_{x0}$ *#* assume the data is in X n = len(X)w = np.ones((n, n))for i in range(n): for j in range(n): w[i, j] = h(X[i], X[j])

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)







DSC 140B Representation Learning

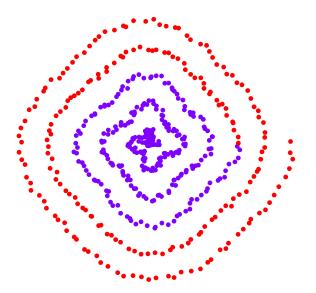
Lecture 15 | Part 4

Laplacian Eigenmaps

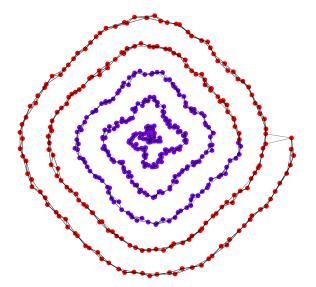
Idea

Build a similarity graph from points in R²
 epsilon neighbors, k-neighbors, or fully connected

Now: use approach from last lecture to embed into \mathbb{R}^k



- Build a k-neighbors graph.
 Note: follows the 1-d shape of the data.

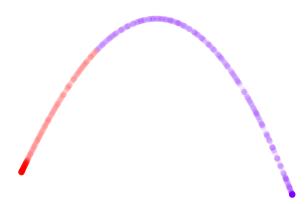


Example 1: Spectral Embedding

- Let W be the weight matrix (k-neighbor adjacency matrix)
- Compute L = D W
- Compute bottom k non-constant eigenvectors of L, use as embedding

• Embedding into \mathbb{R}^1

• Embedding into \mathbb{R}^2

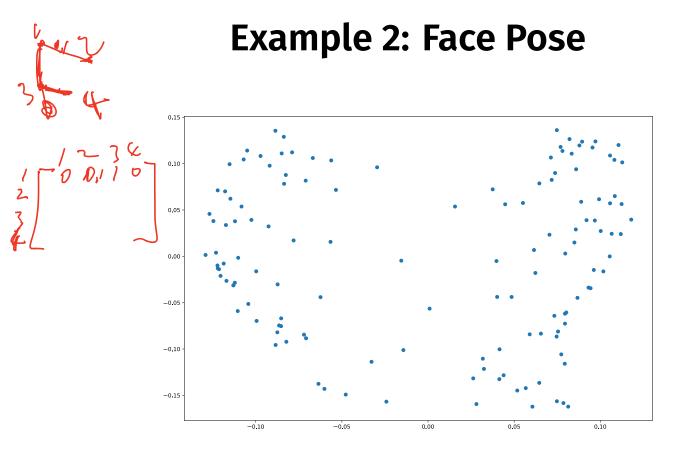


Example 2: Face Pose

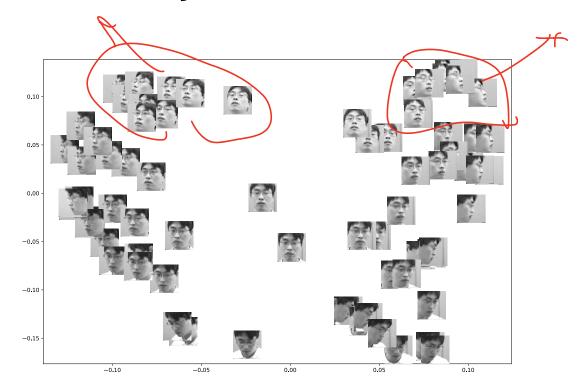
Example 2: Face Pose

Construct fully-connected similarity graph with Gaussian similarity

Embed with Laplacian eigenmaps



Example 2: Face Pose



DSC 140B Representation Learning

Lecture 15 | Part 5

Spectral Clustering

Spectral Embeddings

Useful in multiple tasks:

- Feature learning before classification
- Visualizing high dimensional data
- Clustering

Spectral Clustering

Problem: k-means assumptions:

- Data are vectors (what about graphs?)
- Clusters are spherical (what about more complex patterns?)
- ► One idea:
 - 1. Embed using, e.g., Laplacian eigenmaps
 - 2. Run k-means on the embedded points

Demo