DSC 140B Representation Learning

Lecture 15 | Part 1

Solving the Optimization Problem

A New Formulation

- ▶ **Given**: an *n* × *n* similarity matrix W
- **Compute**: embedding vector \vec{f} **minimizing** $Cost(\vec{f}) = \vec{f}^T L \vec{f}$ subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$
- This might sound familiar...

Recall: PCA

Given: a *d* × *d* covariance matrix *C*

Find: vector *u* maximizing the variance in the direction of *u*:

ū⁺Cū

subject to $\|\vec{u}\| = 1$.

Solution: take \vec{u} = top eigenvector of *C*

A New Formulation

Forget about orthogonality constraint for now.

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$.

Solution: the *bottom* eigenvector of *L*.
 That is, eigenvector with smallest eigenvalue.

Claim

• The bottom eigenvector is
$$\vec{f} = \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$$

It has associated eigenvalue of 0.

Finat is,
$$L\vec{f} = 0\vec{f} = \vec{0}$$

Spectral¹ Theorem

Theorem

If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

¹"Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

The Fix

- Remember: we wanted \$\vec{f}\$ to be orthogonal to \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T.
 i.e., should be orthogonal to bottom eigenvector of \$L\$.
- Fix: take \vec{f} to the be eigenvector of *L* with with smallest eigenvalue $\neq 0$.

• Will be $\perp \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$ by the **spectral theorem**.

Spectral Embeddings: Problem

- Given: similarity graph with n nodes
- Compute: an embedding of the n points into R¹ so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

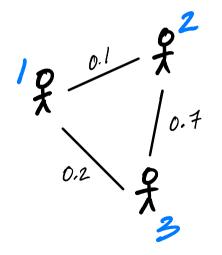
$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2 = \vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

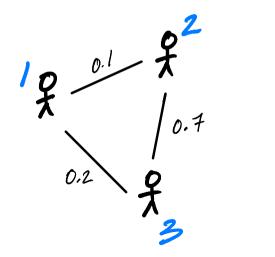
Spectral Embeddings: Solution

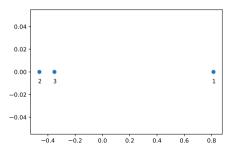
- ► Form the **graph Laplacian** matrix, *L* = *D W*
- Choose f be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Example



Example





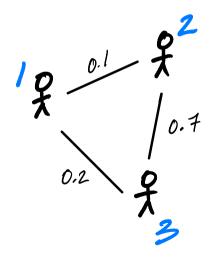
Embedding into \mathbb{R}^k

- This embeds nodes into \mathbb{R}^1 .
- What about embedding into \mathbb{R}^k ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

- ▶ With *k* eigenvectors $\vec{f}^{(1)}$, $\vec{f}^{(2)}$, ..., $\vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^k .
- Consider node i.
 - First new coordinate is $\vec{f}_i^{(1)}$.
 - Second new coordinate is $\vec{f}_i^{(2)}$.
 - Third new coordinate is $\vec{f}_i^{(3)}$.

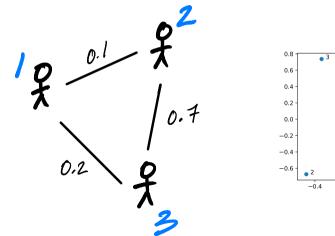
Example

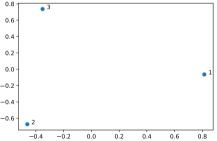


vals, vecs = np.linalg.eigh(L)

```
# take two eigenvectors
# to map to R<sup>2</sup>
f = vecs[:,1:3]
```

Example





Laplacian Eigenmaps

This approach is part of the method of "Laplacian eigenmaps"

Introduced by Mikhail Belkin² and Partha Niyogi

It is a type of spectral embedding

²Now at HDSI

A Practical Issue

► The Laplacian is often **normalized**:

$$L_{\rm norm} = D^{-1/2} L D^{-1/2}$$

where $D^{-1/2}$ is the diagonal matrix whose *i*th diagonal entry is $1/\sqrt{d_{ii}}$.

• Proceed by finding the eigenvectors of L_{norm} .

In Summary

- We can **embed** a similarity graph's nodes into R^k using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction

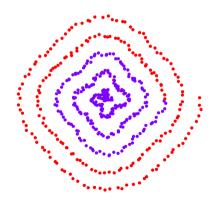
DSC 140B Representation Learning

Lecture 15 | Part 2

Nonlinear Dimensionality Reduction

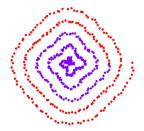
Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?



PCA?

- Does PCA work here?
- Try projecting onto one principal component.



No

PCA?

- PCA simply "rotates" the data.
- ▶ No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.

Today

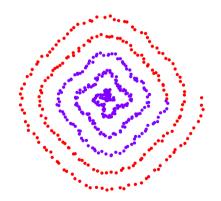
Non-linear dimensionality reduction via spectral embeddings.

Last Time: Spectral Embeddings

- Given: a similarity graph with n nodes, number of dimensions k.
- Embed: each node as a point in R^k such that similar nodes are mapped to nearby points
- Solution: bottom k non-constant eigenvectors of graph Laplacian

Idea

- Build a similarity graph from points.
- Points near the spiral should be similar.
- ► Embed the similarity graph into R¹



Today

- I) How do we build a graph from a set of points?
- 2) Dimensionality reduction with Laplacian eigenmaps

Representation Learning

Lecture 15 | Part 3

From Points to Graphs

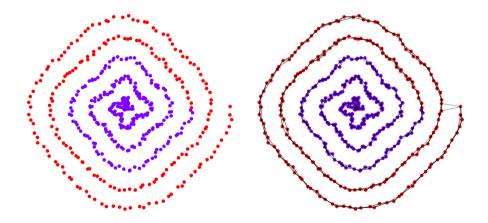
Dimensionality Reduction

- **Given**: *n* points in \mathbb{R}^d , number of dimensions $k \leq d$
- ▶ **Map**: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^k$

Idea

- Build a similarity graph from points in \mathbb{R}^2
- Use approach from last lecture to embed into \mathbb{R}^k
- But how do we represent a set of points as a similarity graph?

Why graphs?



Three Approaches

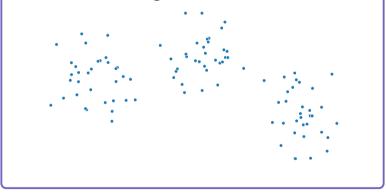
- 1) Epsilon neighbors graph
- > 2) *k*-Nearest neighbor graph
- 3) fully connected graph with similarity function

Epsilon Neighbors Graph

- lnput: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}, a$ number ε
- Create a graph with one node *i* per point x⁽ⁱ⁾
- ► Add edge between nodes *i* and *j* if $\|\vec{x}^{(i)} - \vec{x}^{(j)}\| \le \varepsilon$
- Result: unweighted graph

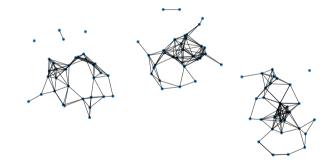
Exercise

What will the graph look like when ε is small? What about when it is large?



Epsilon Neighbors Graph

Epsilon Neighbors Graph



Epsilon Neighbors Graph

Epsilon Neighbors Graph

Note

- We've drawn these graphs by placing nodes at the same position as the point they represent
- But a graph's nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

Picking ε

• If ε is too small, graph is underconnected

• If ε is too large, graph is overconnected

If you cannot visualize, just try and see

With scikit-learn

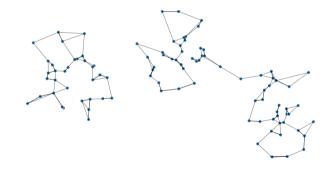
- Input: vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}, \dots$ a number k
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

k-Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
    for j in k_closest_neighbors(X, i):
        adj[i, j] = 1
```

Exercise

Is it possible for a *k*-neighbors graph to be disconected?



With scikit-learn

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}, a similarity function h$
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between every pair of nodes. Assign weight of h(x⁽ⁱ⁾, x^(j))
- Result: weighted graph

- A common similarity function: Gaussian
- Must choose σ appropriately

$$h(\vec{x}, \vec{y}) = e^{-\|\vec{x}-\vec{y}\|^2/\sigma^2}$$

Fully Connected: Pseudocode

```
def h(x, y):
    dist = np.linalg.norm(x, v)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(X)
w = np.ones like(X)
for i in range(n):
    for j in range(n):
        w[i, j] = h(X[i], X[j])
```

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

DSC 140B Representation Learning

Lecture 15 | Part 4

Laplacian Eigenmaps

Problem: Graph Embedding

- **Given**: a similarity graph, target dimension *k*
- Goal: embed the nodes of the graph as points in R^k so that similar nodes are nearby
- (One) Solution: Embed using eigenvectors of the graph Laplacian

Problem: Non-linear Dimensionality Reduction

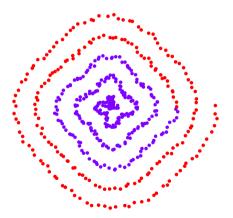
• **Given**: points in \mathbb{R}^d , target dimension k

Goal: embed the points in R^k so that points that were close in R^d are close after

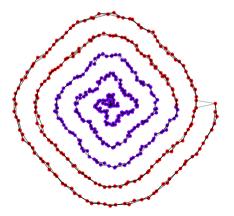
Idea

Build a similarity graph from points in R^d
 epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R^k using eigenvectors of graph Laplacian



- Build a *k*-neighbors graph.
- Note: follows the 1-d shape of the data.



Example 1: Spectral Embedding

- Let W be the weight matrix (k-neighbor adjacency matrix)
- Compute L = D W
- Compute bottom k non-constant eigenvectors of L, use as embedding

▶ Embedding into \mathbb{R}^1

▶ Embedding into \mathbb{R}^2

- Construct fully-connected similarity graph with Gaussian similarity
- Embed with Laplacian eigenmaps

