psC /40&

Represaitaton [earm@

Lecture 15 | Part 1

Solving the Optimization Problem

A New Formulation
Given: an n x n similarity matrix W

Compute: embedding vector f minimizing
Cost(f) = fTLf

subjectto Ifll =1and f L (1,1,...,1)"

This might sound familiar...

Recall: PCA

Given: a d x d covariance matrix C

Find: vector i maximizing the variance in the
direction of u:
urci

subject to ||d]| = 1.

Solution: take i = top eigenvector of C

A New Formulation

Forget about orthogonality constraint for now.

Compute: embedding vector f minimizing
Cost(f) = fTLf
subject to || f]l = 1.

Solution: the bottom eigenvector of L.
That is, eigenvector with smallest eigenvalue.

Claim

The bottom eigenvector is f = ﬁ(h (e

It has associated eigenvalue of 0.

That is, Lf = Of =0

Spectral' Theorem

Theorem
If A is a symmetric matrix, eigenvectors of A with
distinct eigenvalues are orthogonal to one another.

T“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”

The Fix

Remember: we wanted fto be orthogonal to

1 T
(11,1

i.e., should be orthogonal to bottom eigenvector of L.

Fix: take f to the be eigenvector of L with with
smallest eigenvalue # 0.

Will be L ﬁ(t 1,...,1)T by the spectral theorem.

Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector f minimizing

Cost(f) = i

i=1j

wi(f; - £)? = fTLf

n
=1

subjectto ||f| =1and f L (1,1,..., 1)

Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Choose fbe an eigenvector of L with smallest
eigenvalue > 0

This is the embedding!

Example

W = np.array([
[1, 0.1, 0.2],

% [0.1, 1, 0.7],
g / [0.2, 0.7, 1]

D

D = np.diag(W.sum(axis=1))
\ L D - W
% vals, vecs = np.linalg.eigh(L)

f = vecs[:,1]

Example

Embedding into R*
This embeds nodes into R'.
What about embedding into R*?

Natural extension: find bottom k eigenvectors
with eigenvalues > 0

New Coordinates

With k eigenvectors f0), f@, .., f® each node is
mapped to a point in R*.

Consider node i. A
First new coordinate is f{".

Second new coordinate is f.
Third new coordinate is f°.

Example

W = np.array([
Z- [1, 0.1, 0.2],
[0.2, 1, 0.7],

/g y % . [0.2, 0.7, 1]

0.7

o

np.diag(W.sum(axis=1))

L D - W

0.2 % vals, vecs = np.linalg.eigh(L)

take two eigenvectors

to map to R"2
% f = vecs[:,1:3]

Example

Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin? and Partha Niyogi

It is a type of spectral embedding

ZNow at HDSI

A Practical Issue

The Laplacian is often normalized:

Lyorm = D71/2LD71/2

norm

where D™'/2 is the diagonal matrix whose ith
diagonal entry is ‘I/JdT,-.

Proceed by finding the eigenvectors of L,

In Summary

We can embed a similarity graph’s nodes into R"
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction

DsC /1408

Represaitaton [earm@

Lecture 15 @ Part 2

Nonlinear Dimensionality Reduction

Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?

PCA?
Does PCA work here?

Try projecting onto one principal component.

.
..,.- ‘....-....._.: '....
:
oAt e, e e
P L W Y
R e M
.o .'d . <. .
L % 3
: & Y K] } I
N L
N “‘, .! id
L v LI
. LY P
LR I N A
. ., L4
., PN
e 14 o
* LT . .

2
-~

No

@ e O DTN G) D W (@

PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.

Today

Non-linear dimensionality reduction via
spectral embeddings.

Last Time: Spectral Embeddings

Given: a similarity graph with n nodes, number
of dimensions k.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom kR non-constant eigenvectors of
graph Laplacian

Idea

Build a similarity graph
from points.

Points near the spiral
should be similar.

Embed the similarity
graph into R’

Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps

DsC /1408

Represaitaton [earmg

Lecture 15 | Part 3

From Points to Graphs

Dimensionality Reduction

Given: n points in RY, number of dimensions
k<d

Map: each point X to new representation Z € R*

Idea
Build a similarity graph from points in R?
Use approach from last lecture to embed into R*

But how do we represent a set of points as a
similarity graph?

Why graphs?

A 2 N,
Y o f -89
’ § |
.v . “_
A : o/
// L= v
N\ A
1/ e y s
2 B 7
° oo,
.
L]
.
. oot e ®e, -.r
o° . °
o® 0e®™ nn. % ° .
S W
ooo oool ﬁ" .oll l'l .
nn'n \l‘ o Fl u-ﬂ (S
S Ne, S .
F . .\u. . %
} o3 s 2 s
LS, A
-Qo h‘ P’ .k- ° o\ & °
“ Y et 0T 0
. o'o ! ° s ﬁn
onnn -of oo’ *e \.- o.n a§ L
L/ o
-n o . oo o-o
L) Pooe® e .
° .. L]
%000 o0® °

o

Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function

Epsilon Neighbors Graph

Input: vectors X, ..., X",
a number &

Create a graph with one
node i per point X)

Add edge between nodes i
and j if || X - X0| < ¢

Result: unweighted graph

What will the graph look like when € is small? What
about when it is large?

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Note

We've drawn these graphs by placing nodes at
the same position as the point they represent

But a graph’s nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in range(n):
if distance(X[il, X[j]) <= epsilon:
adj[i, 3] = 1

Picking ¢
If € is too small, graph is underconnected
If € is too large, graph is overconnected

If you cannot visualize, just try and see

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.radius_neighbors_graph(
X,
radius=...

k-Neighbors Graph

Input: vectors X, ..., X",
a number R

Create a graph with one
node i per point X)

Add edge between each
node i and its Rk closest
neighbors

Result: unweighted graph

k-Neighbors: Pseudocode

assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in k_closest_neighbors(X, i):
adjli, jl = 1

Is it possible for a k-neighbors graph to be dis-
conected?

k-Neighbors Graph

o

T . .{rf

AI}.fA" 'f'\\\}‘ .
. .,: v .:fk\
S i

—e »4.

R

—e

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X,
n_neighbors=...

Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h

Create a graph with one
node i per point X)

Add edge between every
pair of nodes. Assign

weight of h(X0, X0))

Result: weighted graph

Gaussian Similarity
A common similarity function: Gaussian

Must choose o appropriately

h(X,y) = e 1%-VI?/0?

Fully Connected: Pseudocode

def h(x, y):
dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma*x2)

assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
for j in range(n):
wli, j1 = h(X[il, X[j1)

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigmaxx2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

ilarity

imi

Gaussian S

DsC /1408

Represaitaton [earmg

Lecture 15 | Part 4

Laplacian Eigenmaps

Problem: Graph Embedding

Given: a similarity graph, target dimension R

Goal: embed the nodes of the graph as points in
R* so that similar nodes are nearby

(One) Solution: Embed using eigenvectors of the
graph Laplacian

Problem: Non-linear Dimensionality
Reduction

Given: points in RY, target dimension k

Goal: embed the points in RF so that points that
were close in RY are close after

Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R® using
eigenvectors of graph Laplacian

|

Ira

-, .
° .
Q. i)
) 4 § e
S oo s".o) °.
o0 & o w

Example 1
é\.\

Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.

Example 1: Spectral Embedding

Let W be the weight matrix (kR-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding

Example 1: Spiral

Embedding into R’

QI 00 YD O B () R B0 B 00 BON MESEAOHED

Example 1: Spiral

Embedding into R?

Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2
)

Example 2: Face Pose

I 79 I O
€ B 3 5 P
B i B P
P 5 6 B i €
6 I P
[# - B pa i
71 o B B
G 7 7 e
il I i B i e
I B P9 1 4

Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps

Example 2: Face Pose

Example 2: Face Pose

B

%3

0.10 - s
,? AL
0.05 ;| ; b 3
| ?&'%:a

"y
”'2
g
- ‘,3]4

"éq'q
“q
g

