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Lecture 16 @ Part 1

Laplacian Eigenmaps



Problem: Graph Embedding

Given: a similarity graph, target dimension R

Goal: embed the nodes of the graph as points in
R* so that similar nodes are nearby

(One) Solution: Embed using eigenvectors of the
graph Laplacian



Problem: Non-linear Dimensionality
Reduction

Given: points in RY, target dimension k

Goal: embed the points in R* so that points that
were close in R? are close after



Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Embed the similarity graph in R using
eigenvectors of graph Laplacian
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Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.
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Example 1: Spectral Embedding

Let W be the weight matrix (R-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding



Example 1: Spiral

Embedding into R’



Example 1: Spiral

Embedding into R?



Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2

)



Example 2: Face Pose
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Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps



Example 2: Face Pose




Example 2: Face Pose
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Prediction



So far...

Unsupervised representation learning
Reveals the “structure” of the data
Dimensionality reduction and manifold learning
Useful for clustering, visualization, etc.

What about supervised representation learning?
Suppose we want a representation that makes
prediction easier.

PCA, etc., can help, but don’t consider labels.



What's ahead...

We'll remember a linear predictor from DSC 40A
Least squares regression / classification

We'll see how using a different representation
can make prediction easier

We'll introduce deep learning as a way of finding
representations optimized for prediction



Predicting Opinions

We often use the opinions of others to predict
our own.

But we don't hold all opinions equally...



Movie Ratings

Friend A: “This movie was great!”
— | know I'll like it.

”n
!

Friend B: “This movie was great
— | know | won't like it.
Still useful!

Friend C: “This movie was great!”
— | don't know... they like every movie!
Not useful.



Movie Ratings

Five of your friends rate a movie from 0-10:
Xq: 9

0 3
27
Xy: 2
: 8

Task: What will you rate the movie?



Prediction
Prediction is a core ML task.

Regression: output is a number.
Example: movie rating, future salary

Classification: output is a class label.
Example: like the movie? mango is ripe? (yes/no) —
binary
Example: species (cat, dog, mongoose) — multiclass



Prediction Functions

Informally: we think our friends’ ratings predict
our own.

Formally: we think there is a function H that
takes our friend’s ratings X = (X4, X5, X3, X;, Xs)
and outputs a good prediction of our rating.

@(7() — prediction

H is called a prediction function.’

0r, sometimes, @pothesis function



Prediction Functions

Problem: There are infinitely many prediction
functions.
Hy(X) = =2 + 3X5.
H,(X) = sin(X; - X; - X3+ X, + Xs)
H5(X) = /X; + X3(X; - X5 X5 + 100) 5
2

How do we pick one?

2Most can't even be expressed algebraically.



The Fundamental Assumption of
Learning

Informally: The past will repeat itself.
- _—

Formally: A prediction function that made good
predictions in the past will continue to make
good predictions in the future3,

‘_—’_/—r

3This isn’t always true!



Picking a Prediction Function

Idea: Us@o pick a prediction function that
worked well in the past.

We hope it generalizes to future predictions.

A function that did well in thepast but does not
generalize is said to hav




Training Data

Movie | X; X, X3 X, Xs|You

#1 5 9 2
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A Learning Meta-Algorithm

Given data, how do we choose a prediction
function?

One common strategy is empirical risk
° ° ° ° t——— TN
minimization (ERM).
a.k.a., “minimizing expected loss”




Empirical Risk Minimization (ERM)
Step 1: choose a hypothesis class i L'J‘;
Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Hypothesis Classes

A hypothesis class # is a set of possible
prediction functions.

By choosing a hypothesis class, we are saying
something about what the prediction function
should look like.

Examples:
H := linear functions
H := functions of the form sin(w, x; + ... Xc X<)
# := decision trees of depth 10
H := neural networks with one layer



Hypothesis Class Complexity

The more complex the hypothesis class, the

greater the danger of-everfitting.
Think: polynomials of degree 10 versus 2.

Occam’s Razor: assume H is simple.
- —
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Least Squares Regression



A Simple Prediction Function

We can go a long way by assuming our prediction
functions to be linear.




A Simple Prediction Function

Five of your friends rate a movie from 0-10:

x
«.
00N N W\

Idea: predict a weighted sum.




Linear Prediction Functions

H(X) = Wg + W;Xq + Wy X, + W3 X3 + W, X, + WeXe
\ S— - ~ — — —_—

This is a linear prediction function.
Wy, Wy, ..., Ws are the parameters or weights.

W = (W, ..., ws)" is a parameter vector.

=



Linear Predictors




e

Class of Linear Functions

There are infinitely many functions of the form

H(X) = Wg + Wy Xq + Wy X, + W3X3 + W, X, + WeXe

Each one is completely determined b@

Sometimes write H(x; W)

Example: w

-

(8,3,1,5,-2,-7)" specifies

H(X; W) = 1 - 2%, -7
(x\,w) 8+ 3X, +1Xy +5X5-2X, - 7Xs

I
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“Parameterization” 4
v\/\/\/\/\,\/—“

A very useful trick.

Searching all linear functions = searching over
W e R®
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Linear Prediction and the Dot
Product

The augmented feature vector Aug(X) is the
vector obtained by adding a 1to the front of x:




Simplification
With augmentation, we can write as dot product:

H(X) MM
= Aug(Xx

“f/ ok\




Geometric Meaning

It can be very useful to think geometrically when
reasoning about prediction algorithms.



Example

A linear prediction function for salary.

H,(X) = $50,000 + (experience) x $8,000 .
\\(j\Bor/\ Hl C)C)

\0o¥

5 10 15

')(7_ experience X & lR‘l



Surface

The surface o rediction function H is the
surface made by plotting H(X) for all x.

If His a linear prediction function, and®
X ' then H(x) is a straight line.
X € R?, the surface is a plane.
X Eﬂd, the surface is a d-dimensional hyperplane.

“when plotted in the original feature coordinate space!



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Step #2: Choose a loss function

Suppose we assume prediction function is linear.

A
There are still infinitely-many possibilities. (V

We'll pick one that works well on training data.

What does “works well” mean?



Example: Movie Ratings

Movie | X; X, X3 X, Xs|You

#1 8 5 9 2 1| 6
H2 3 5 7 8 2| 8
H3 1T 5 2 3 3| 9
H4 O 5 3 8 2| 7?



Quantifying Quality

Consider a training example (x ( )y
Notation: X% is the “ith training example
j(' is the “jth entry of the ith training example”

-

The “right answer” is@

Our prediction function outputs H(X(")

We measure the difference using a loss function.



Loss Function

A loss function quantifies how wrong a sin
prediction is.

L(H(XM), ;)

L(prediction for example i, correct answer for example i)




A good H is good on average over entire data set.

- o \
Thelexpected lor empirical risk) is one way _ b
of measuring this: L\ L

R = 2 STLHGD), y) = 5
=1 o

Note: depends on H and the data!



Loss Functions for Regression

We want H(X?) = y..

I

Absolute loss: |H(X?) - y:|
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Mean Squared Error

Expected square loss (mean squared error):

R..(H) =

sq(

This is the empirical risk for the square loss.

Goal: find H minimizing MSE.
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Step #3: Minimize MSE

We want to find an H minimizing this:




Calculus %

We want to find w that minimizes the aver
square loss:

1 n
Req() = — > (i - Aug(x?) - y;)?
i=1

DR gy

Vv
Take the gradient, set to 0, solve.

3
SNJ

Solution: the Normal Equations, w = (X'X) ' Xty
,\/\A—A—/

X
W
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Design Matrix

X is the design matrix X:

Aug(x(1)

Aug(x")

X Aug(x?)) O IR 2

dv) \1 X




Note

There was a closed-form solution!

This is a direct consequence of using the mean
_squared error. I —

Not true if we use, e.g.,, the mean @ﬁ;m;e error.

S
W




Why linear?
Easy to work with mathematically.
Harder to overfit.

But still quite powerful.
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Least Squares Classifiers



Movie Ratings

Five of your friends rate a movie from 0-10:

X
L*.).
00N N WO

Task: Will you like the movie? (yes / no)
W



Classification

Linear prediction functions can be used in
classification, too.

H(X) = Wy + Wi Xq + WoXy + ..o + WXy

Same ERM paradigm also useful.



A Classifier from a Regressor

Binary classification can be thought of as
regression where the targets are 1 and -1

(or0and1,or..)

<=1

H(X) outputs a real number. Use the sign
function to turn it into -1, 1:

sign(z) = {

1 z>0

-1 z<0

- =

0 otherwise

—Finalprediction: \sign(H(X))



S —

Example: Mango Ripeness

Predict whether a mango is ripe given greenness
and hardness.

Idea: gather a set of labeled training data.
Inputs along with correct output (i.e., “the answer”).

Greenness Hardness | Ripe

0.7 0.9
0.2 0.5
0.3 0.1




hardness

ripe
not ripe




greenness
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Decision BoundaW

The decision boundary is the place where the
output of H(x) switches from “yes” to “no”.

IfH>0m~ “yes”and H <0 » “no”, the decision
boundary is where H = 0.

If His d linear predictorand®
#%€ R', then the decision boundary is just a number,
X € R?, the boundary is a straight line.
X € RY the boundary is a d - 1 dimensional (hyper)
plane.

>when plotted in the original feature coordinate space!



Empirical Risk Minimization

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)



Can we use the square loss for classification?

(HXD) - y,)?




Least Squares and Outliers

-6
-8 -8
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

®Bishop, Pattern Recognition and Machine Learning



Square Loss for Classification

We can use the square loss for classification
The “least squares classifier”

However, the square loss penalizes being “too
correct”

Example: suppose the correct label is 1. What is
the square loss of predicting 10? -9?



Loss Functions

There are many different loss functions for
classification.

Each leads to a different classifier:
Logistic Regression
Support Vector Machine
Perceptron
etc.

But that's for another class... (DSC 140A)



