
Lecture 16 | Part 1

Laplacian Eigenmaps

Problem: Graph Embedding

▶ Given: a similarity graph, target dimension 𝑘

▶ Goal: embed the nodes of the graph as points in
ℝ𝑘 so that similar nodes are nearby

▶ (One) Solution: Embed using eigenvectors of the
graph Laplacian

Problem: Non-linear Dimensionality
Reduction

▶ Given: points in ℝ𝑑, target dimension 𝑘

▶ Goal: embed the points in ℝ𝑘 so that points that
were close in ℝ𝑑 are close after

Idea

▶ Build a similarity graph from points in ℝ𝑑
▶ epsilon neighbors, 𝑘-neighbors, or fully connected

▶ Embed the similarity graph in ℝ𝑘 using
eigenvectors of graph Laplacian

Example 1: Spiral

Example 1: Spiral
▶ Build a 𝑘-neighbors graph.
▶ Note: follows the 1-d shape of the data.

Example 1: Spectral Embedding

▶ Let 𝑊 be the weight matrix (𝑘-neighbor
adjacency matrix)

▶ Compute 𝐿 = 𝐷 − 𝑊

▶ Compute bottom 𝑘 non-constant eigenvectors of
𝐿, use as embedding

Example 1: Spiral

▶ Embedding into ℝ1

Example 1: Spiral

▶ Embedding into ℝ2

Example 1: Spiral
import sklearn.neighbors
import sklearn.manifold
W = sklearn.neighbors.kneighbors_graph(

X, n_neighbors=4
)
embedding = sklearn.manifold.spectral_embedding(

W, n_components=2
)

Example 2: Face Pose

Example 2: Face Pose

▶ Construct fully-connected similarity graph with
Gaussian similarity

▶ Embed with Laplacian eigenmaps

Example 2: Face Pose

0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Example 2: Face Pose

0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10

Lecture 16 | Part 2

Prediction

So far...

▶ Unsupervised representation learning
▶ Reveals the “structure” of the data
▶ Dimensionality reduction and manifold learning
▶ Useful for clustering, visualization, etc.

▶ What about supervised representation learning?
▶ Suppose we want a representation that makes
prediction easier.

▶ PCA, etc., can help, but don’t consider labels.

What’s ahead...

1. We’ll remember a linear predictor from DSC 40A
▶ Least squares regression / classification

2. We’ll see how using a different representation
can make prediction easier

3. We’ll introduce deep learning as a way of finding
representations optimized for prediction

Predicting Opinions

▶ We often use the opinions of others to predict
our own.

▶ But we don’t hold all opinions equally...

Movie Ratings

▶ Friend A: “This movie was great!”
▶ → I know I’ll like it.

▶ Friend B: “This movie was great!”
▶ → I know I won’t like it.
▶ Still useful!

▶ Friend C: “This movie was great!”
▶ → I don’t know... they like every movie!
▶ Not useful.

Movie Ratings

▶ Five of your friends rate a movie from 0-10:
▶ 𝑥1: 9
▶ 𝑥2: 3
▶ 𝑥3: 7
▶ 𝑥4: 2
▶ 𝑥5: 8

▶ Task: What will you rate the movie?

Prediction

▶ Prediction is a core ML task.

▶ Regression: output is a number.
▶ Example: movie rating, future salary

▶ Classification: output is a class label.
▶ Example: like the movie? mango is ripe? (yes/no)→
binary

▶ Example: species (cat, dog, mongoose)→ multiclass

Prediction Functions

▶ Informally: we think our friends’ ratings predict
our own.

▶ Formally: we think there is a function 𝐻 that
takes our friend’s ratings ⃗𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)
and outputs a good prediction of our rating.

𝐻(⃗𝑥) → prediction

▶ 𝐻 is called a prediction function.1
1Or, sometimes, a hypothesis function

Prediction Functions

▶ Problem: There are infinitely many prediction
functions.
▶ 𝐻1(⃗𝑥) = −2𝑥1 + 3𝑥5
▶ 𝐻2(⃗𝑥) = sin(𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋅ 𝑥4 ⋅ 𝑥5)
▶ 𝐻3(⃗𝑥) = √𝑥1 + 𝑥3(𝑥1 − 𝑥2𝑥5 + 100)
▶ ...2

▶ How do we pick one?

2Most can’t even be expressed algebraically.

The Fundamental Assumption of
Learning

▶ Informally: The past will repeat itself.

▶ Formally: A prediction function that made good
predictions in the past will continue to make
good predictions in the future3.

3This isn’t always true!

Picking a Prediction Function

▶ Idea: Use data to pick a prediction function that
worked well in the past.

▶ We hope it generalizes to future predictions.

▶ A function that did well in the past but does not
generalize is said to have overfit.

Training Data

Movie 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 You

#1 8 5 9 2 1 6
#2 3 5 7 8 2 8
#3 1 5 2 3 3 9

#4 0 5 3 8 2 ?

A Learning Meta-Algorithm

▶ Given data, how do we choose a prediction
function?

▶ One common strategy is empirical risk
minimization (ERM).
▶ a.k.a., “minimizing expected loss”

Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

Hypothesis Classes
▶ A hypothesis class H is a set of possible
prediction functions.

▶ By choosing a hypothesis class, we are saying
something about what the prediction function
should look like.

▶ Examples:
▶ H ∶= linear functions
▶ H ∶= functions of the form sin(𝑤1𝑥1 + …𝑥5𝑥5)
▶ H ∶= decision trees of depth 10
▶ H ∶= neural networks with one layer

Hypothesis Class Complexity

▶ The more complex the hypothesis class, the
greater the danger of overfitting.
▶ Think: polynomials of degree 10 versus 2.

▶ Occam’s Razor: assume 𝐻 is simple.

Lecture 16 | Part 3

Least Squares Regression

A Simple Prediction Function

▶ We can go a long way by assuming our prediction
functions to be linear.

A Simple Prediction Function

▶ Five of your friends rate a movie from 0-10:

▶ 𝑥1: 9
▶ 𝑥2: 3
▶ 𝑥3: 7
▶ 𝑥4: 2
▶ 𝑥5: 8

▶ Idea: predict a weighted sum.

Linear Prediction Functions

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5

▶ This is a linear prediction function.

▶ 𝑤0, 𝑤1, … , 𝑤5 are the parameters or weights.

▶ �⃗� = (𝑤0, … , 𝑤5)𝑇 is a parameter vector.

Linear Predictors

Class of Linear Functions

▶ There are infinitely many functions of the form

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5

▶ Each one is completely determined by �⃗�.
▶ Sometimes write 𝐻(⃗𝑥; �⃗�)

▶ Example: �⃗� = (8, 3, 1, 5, −2, −7)𝑇 specifies

𝐻(⃗𝑥; �⃗�) = 8 + 3𝑥1 + 1𝑥2 + 5𝑥3 − 2𝑥4 − 7𝑥5

“Parameterization”

▶ A very useful trick.

▶ Searching all linear functions ≡ searching over
�⃗� ∈ ℝ6

In General

▶ If there are 𝑑 features, there are 𝑑 +1 parameters:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

= 𝑤0 +
𝑑

∑
𝑖=1
𝑤𝑖𝑥𝑖

Linear Prediction and the Dot
Product

▶ The augmented feature vector Aug(⃗𝑥) is the
vector obtained by adding a 1 to the front of ⃗𝑥:

⃗𝑥 = (

𝑥1

𝑥2

⋮
𝑥𝑑

) Aug(⃗𝑥) = (

1

𝑥1

𝑥2

⋮
𝑥𝑑

)

Simplification

▶ With augmentation, we can write as dot product:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑
= Aug(⃗𝑥) ⋅ �⃗�

�⃗� = (

𝑤0

𝑤1

⋮
𝑤𝑑

) Aug(⃗𝑥) =
⎛⎜⎜⎜⎜

⎝

1

𝑥1

𝑥2

⋮
𝑥𝑑

⎞⎟⎟⎟⎟

⎠

Geometric Meaning

▶ It can be very useful to think geometrically when
reasoning about prediction algorithms.

Example
▶ A linear prediction function for salary.

𝐻1(⃗𝑥) = $50,000 + (experience) × $8,000

Surface

▶ The surface of a prediction function 𝐻 is the
surface made by plotting 𝐻(⃗𝑥) for all ⃗𝑥.

▶ If 𝐻 is a linear prediction function, and4
▶ ⃗𝑥 ∈ 𝑅1, then 𝐻(𝑥) is a straight line.
▶ ⃗𝑥 ∈ ℝ2, the surface is a plane.
▶ ⃗𝑥 ∈ ℝ𝑑, the surface is a 𝑑-dimensional hyperplane.

4when plotted in the original feature coordinate space!

Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

Step #2: Choose a loss function

▶ Suppose we assume prediction function is linear.

▶ There are still infinitely-many possibilities.

▶ We’ll pick one that works well on training data.

▶ What does “works well” mean?

Example: Movie Ratings

Movie 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 You

#1 8 5 9 2 1 6
#2 3 5 7 8 2 8
#3 1 5 2 3 3 9

#4 0 5 3 8 2 ?

Quantifying Quality

▶ Consider a training example (⃗𝑥(𝑖), 𝑦𝑖)
▶ Notation: ⃗𝑥(𝑖) is the “𝑖th training example”
▶ ⃗𝑥(𝑖)𝑗 is the “𝑗th entry of the 𝑖th training example”

▶ The “right answer” is 𝑦𝑖

▶ Our prediction function outputs 𝐻(⃗𝑥(𝑖))

▶ We measure the difference using a loss function.

Loss Function

▶ A loss function quantifies how wrong a single
prediction is.

𝐿(𝐻(⃗𝑥(𝑖)), 𝑦𝑖)
𝐿(prediction for example 𝑖, correct answer for example 𝑖)

Empirical Risk

▶ A good 𝐻 is good on average over entire data set.

▶ The expected loss (or empirical risk) is one way
of measuring this:

𝑅(𝐻) = 1𝑛

𝑛

∑
𝑖=1
𝐿(𝐻(⃗𝑥(𝑖)), 𝑦𝑖)

▶ Note: depends on 𝐻 and the data!

Loss Functions for Regression

▶ We want 𝐻(⃗𝑥(𝑖)) ≈ 𝑦𝑖.

▶ Absolute loss: |𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|

▶ Square loss: (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Mean Squared Error

▶ Expected square loss (mean squared error):

𝑅sq(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ This is the empirical risk for the square loss.

▶ Goal: find 𝐻 minimizing MSE.

Step #3: Minimize MSE

▶ We want to find an 𝐻 minimizing this:

𝑅sq(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ It helps to use linear assumption:

𝑅sq(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖)2

Calculus

▶ We want to find �⃗� that minimizes the average
square loss:

𝑅sq(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ Take the gradient, set to 0⃗, solve.

▶ Solution: the Normal Equations, �⃗� = (𝑋𝑡𝑋)−1𝑋𝑡 ⃗𝑦

Design Matrix

▶ 𝑋 is the design matrix 𝑋:

𝑋 = (

Aug(⃗𝑥(1))
Aug(⃗𝑥(2))

⋮ ⋮
Aug(⃗𝑥(𝑛))

) =
⎛⎜⎜⎜

⎝

1 𝑥(1)1 𝑥(1)2 … 𝑥(1)𝑑

1 𝑥(2)1 𝑥(2)2 … 𝑥(2)𝑑

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥(𝑛)1 𝑥(𝑛)2 … 𝑥(𝑛)𝑑

⎞⎟⎟⎟

⎠

Note

▶ There was a closed-form solution!

▶ This is a direct consequence of using the mean
squared error.

▶ Not true if we use, e.g., the mean absolute error.

Why linear?

▶ Easy to work with mathematically.

▶ Harder to overfit.

▶ But still quite powerful.

Lecture 16 | Part 4

Least Squares Classifiers

Movie Ratings

▶ Five of your friends rate a movie from 0-10:

▶ 𝑥1: 9
▶ 𝑥2: 3
▶ 𝑥3: 7
▶ 𝑥4: 2
▶ 𝑥5: 8

▶ Task: Will you like the movie? (yes / no)

Classification

▶ Linear prediction functions can be used in
classification, too.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ Same ERM paradigm also useful.

A Classifier from a Regressor
▶ Binary classification can be thought of as
regression where the targets are 1 and -1
▶ (or 0 and 1, or ...)

▶ 𝐻(⃗𝑥) outputs a real number. Use the sign
function to turn it into −1, 1:

sign(𝑧) = {
1 𝑧 > 0
−1 𝑧 < 0
0 otherwise

▶ Final prediction: sign(𝐻(⃗𝑥))

Example: Mango Ripeness

▶ Predict whether a mango is ripe given greenness
and hardness.

▶ Idea: gather a set of labeled training data.
▶ Inputs along with correct output (i.e., “the answer”).

Greenness Hardness Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1
⋮ ⋮ ⋮

2 1 0 1 2 3 4 5 6
greenness

1

0

1

2

3

4

5

ha
rd

ne
ss

ripe
not ripe

2 1 0 1 2 3 4 5 6
greenness

1

0

1

2

3

4

5

ha
rd

ne
ss

ripe
not ripe

Decision Boundary

▶ The decision boundary is the place where the
output of 𝐻(𝑥) switches from “yes” to “no”.
▶ If 𝐻 > 0 ↦ “yes” and 𝐻 < 0 ↦ “no”, the decision
boundary is where 𝐻 = 0.

▶ If 𝐻 is a linear predictor and5
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

5when plotted in the original feature coordinate space!

Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

Exercise

Can we use the square loss for classification?

(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Least Squares and Outliers

6

6Bishop, Pattern Recognition and Machine Learning

Square Loss for Classification

▶ We can use the square loss for classification
▶ The “least squares classifier”

▶ However, the square loss penalizes being “too
correct”

▶ Example: suppose the correct label is 1. What is
the square loss of predicting 10? -9?

Loss Functions

▶ There are many different loss functions for
classification.

▶ Each leads to a different classifier:
▶ Logistic Regression
▶ Support Vector Machine
▶ Perceptron
▶ etc.

▶ But that’s for another class... (DSC 140A)

