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Least Squares Classifiers



Movie Ratings

▶ Five of your friends rate a movie from 0-10:

▶ 𝑥1: 9
▶ 𝑥2: 3
▶ 𝑥3: 7
▶ 𝑥4: 2
▶ 𝑥5: 8

▶ Task: Will you like the movie? (yes / no)



Classification

▶ Linear prediction functions can be used in
classification, too.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ Same ERM paradigm also useful.



A Classifier from a Regressor
▶ Binary classification can be thought of as
regression where the targets are 1 and -1
▶ (or 0 and 1, or ...)

▶ 𝐻( ⃗𝑥) outputs a real number. Use the sign
function to turn it into −1, 1:

sign(𝑧) = {
1 𝑧 > 0
−1 𝑧 < 0
0 otherwise

▶ Final prediction: sign(𝐻( ⃗𝑥))



Example: Mango Ripeness

▶ Predict whether a mango is ripe given greenness
and hardness.

▶ Idea: gather a set of labeled training data.
▶ Inputs along with correct output (i.e., “the answer”).

Greenness Hardness Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1
⋮ ⋮ ⋮
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Decision Boundary

▶ The decision boundary is the place where the
output of 𝐻(𝑥) switches from “yes” to “no”.
▶ If 𝐻 > 0 ↦ “yes” and 𝐻 < 0 ↦ “no”, the decision
boundary is where 𝐻 = 0.

▶ If 𝐻 is a linear predictor and1
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

1when plotted in the original feature coordinate space!



Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)



Exercise

Can we use the square loss for classification?

(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2



Least Squares and Outliers

2

2Bishop, Pattern Recognition and Machine Learning



Square Loss for Classification

▶ We can use the square loss for classification
▶ The “least squares classifier”

▶ However, the square loss penalizes being “too
correct”

▶ Example: suppose the correct label is 1. What is
the square loss of predicting 10? -9?



Loss Functions

▶ There are many different loss functions for
classification.

▶ Each leads to a different classifier:
▶ Logistic Regression
▶ Support Vector Machine
▶ Perceptron
▶ etc.

▶ But that’s for another class... (DSC 140A)
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Linear Limitations



Linear Predictors

▶ Last time, we saw linear prediction functions:

𝐻( ⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑
= Aug( ⃗𝑥) ⋅ 𝑤⃗



Linear Decision Functions

▶ A linear prediction function 𝐻 outputs a number.

▶ What if classes are +1 and -1?

▶ Can be turned into a decision function by taking:

sign(𝐻( ⃗𝑥))

▶ Decision boundary is where 𝐻 = 0
▶ Where the sign switches from positive to negative.



Decision Boundaries

▶ A linear decision function’s decision boundary is
linear.
▶ A line, plane, hyperplane, etc.
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An Example: Parking Predictor

▶ Task: Predict (yes / no): Is there parking
available at UCSD right now?

▶ What training data to collect? What features?



Useful Features

▶ Time of day?

▶ Day’s high temperature?

▶ ...



Exercise

Imagine a scatter plot of the training data with the
two features:
▶ 𝑥1 = time of day
▶ 𝑥2 = temperature

“yes” examples are green, “no” are red.

What does it look like?



Parking Data
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x 2
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Uh oh

x1 = time of day

x 2
 =
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▶ A linear decision function
won’t work.

▶ What do we do?



Today’s Question

▶ How do we learn non-linear patterns using linear
prediction functions?
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Feature Maps



Representations

▶ We represented the data with two features: time
and temperature

▶ In this representation, the trend is nonlinear.
▶ There is no good linear decision function
▶ Learning is “difficult”.



Idea

▶ Idea: We’ll make a new representation by
creating new features from the old features.

▶ The “right” representation makes the problem
easy again.

▶ What new features should we create?



New Feature Representation

▶ Linear prediction functions3 work well when
relationship is linear
▶ When 𝑥 is small we should predict -1
▶ When 𝑥 is large we should predict +1

▶ But parking’s relationship with time is not linear:
▶ When time is small we should predict +1
▶ When time is medium we should predict -1
▶ When time is large we should predict +1

3Remember: they are weighted votes.



Exercise

How can we “transform” the time of day 𝑥1 to
create a new feature 𝑥′1 satisfying:

▶ When 𝑥′1 is small, we should predict -1
▶ When 𝑥′1 is large, we should predict +1

What about the temperature, 𝑥2?



Idea

x1 = time of day

x 2
 =

 te
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Found Parking
No Parking

▶ Transform “time” to “absolute time
until/since Noon”

▶ Transform “temp.” to “absolute
difference between temp. and 72∘”



Basis Functions

▶ We will transform:
▶ the time, 𝑥1, to |𝑥1 − Noon|
▶ the temperature, 𝑥2, to |𝑥2 − 72∘|

▶ Formally, we’ve designed non-linear basis
functions:

𝜑1(𝑥1, 𝑥2) = |𝑥1 − Noon|
𝜑2(𝑥1, 𝑥2) = |𝑥2 − 72∘|

▶ In general a basis function 𝜑 maps ℝ𝑑 → ℝ



Feature Mapping

▶ Define 𝜑⃗( ⃗𝑥) = (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥))𝑇. 𝜑⃗ is a feature map
▶ Input: vector in “old” representation
▶ Output: vector in “new” representation

▶ Example:

𝜑⃗((10a.m., 75∘)𝑇) = (2 hours, 3∘)𝑇

▶ 𝜑⃗ maps raw data to a feature space.



Feature Space, Visualized
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Exercise

Where does 𝜑⃗ map ⃗𝑥(1), ⃗𝑥(2), and ⃗𝑥(3)?
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Solution
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After the Mapping

▶ The basis functions 𝜑1, 𝜑2 give us our “new”
features.

▶ This gives us a new representation.

▶ In this representation, learning (classification) is
easier.



Training

▶ Map each training example ⃗𝑥(𝑖) to feature space,
creating new training data:

⃗𝑧(1) = 𝜑⃗( ⃗𝑥(1)), ⃗𝑧(2) = 𝜑⃗( ⃗𝑥(2)), … , ⃗𝑧(𝑛) = 𝜑⃗( ⃗𝑥(𝑛))

▶ Fit linear prediction function 𝐻 in usual way:

𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑



Training Data in Feature Space

z1

2z

Found Parking
No Parking



Prediction

▶ If we have ⃗𝑧 in feature space, prediction is:

𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑



Prediction

▶ But if we have ⃗𝑥 from original space, we must
“convert” ⃗𝑥 to feature space first:

𝐻( ⃗𝑥) = 𝐻𝑓(𝜑⃗( ⃗𝑥))
= 𝐻𝑓( (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑( ⃗𝑥))𝑇 )
= 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + … + 𝑤𝑑𝜑𝑑( ⃗𝑥)



Overview: Feature Mapping

▶ A basis function can involve any/all of the
original features:

𝜑3( ⃗𝑥) = 𝑥1 ⋅ 𝑥2

▶ We can make more basis functions than original
features:

𝜑⃗( ⃗𝑥) = ( 𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), 𝜑3( ⃗𝑥) )𝑇



Overview: Feature Mapping

1. Start with data in original space, ℝ𝑑.

2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′

3. Map each data point to feature space ℝ𝑑′:

⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑡

4. Fit linear prediction function in new space:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)



𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)

𝑥1

𝑥2

⋮

𝑥𝑑

𝜑1

𝜑2

⋮

𝜑𝑑′

∑

1
𝑤1
𝑤2

𝑤𝑑′

𝑤0



Today’s Question

▶ Q: How do we learn non-linear patterns using
linear prediction functions?

▶ A: Use non-linear basis functions to map to a
feature space.
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Basis Functions and Regression



By the way...

▶ You’ve (probably) seen basis functions used
before.

▶ Linear regression for non-linear patterns in DSC
40A.



Example



Fitting Non-Linear Patterns

▶ Fit function of the form

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4

▶ Linear function of 𝑤⃗, non-linear function of 𝑥.



The Trick

▶ Treat 𝑥, 𝑥2, 𝑥3, 𝑥4 as new features.
▶ Create design matrix:

𝑋 = ⎛⎜

⎝

1 𝑥1 𝑥21 𝑥31 𝑥41

1 𝑥2 𝑥22 𝑥32 𝑥42

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛 𝑥4𝑛

⎞⎟

⎠

▶ Solve 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇𝑤⃗ for 𝑤⃗, as usual.
▶ Works for more than just polynomials.



Another View

▶ We have changed the representation of a point:

𝑥 ↦ (𝑥, 𝑥2, 𝑥3, 𝑥4)

▶ Basis functions:

𝜑1(𝑥) = 𝑥 𝜑2(𝑥) = 𝑥2 𝜑3(𝑥) = 𝑥3 𝜑4(𝑥) = 𝑥4
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A Tale of Two Spaces



A Tale of Two Spaces

▶ The original space: where the raw data lies.

▶ The feature space: where the data lies after
feature mapping 𝜑⃗

▶ Remember: we fit a linear prediction function in
the feature space.



Exercise

▶ In feature space, what does the decision
boundary look like?

▶ What does the prediction function surface
look like?
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Decision Boundary in Feature Space4
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4Fit by minimizing square loss



Prediction Surface in Feature Space



Exercise

▶ In the original space, what does the decision
boundary look like?

▶ What does the prediction function surface
look like?
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Decision Boundary in Original Space5

x1 = time of day
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5Fit by minimizing square loss



Prediction Surface in Original Space



Insight

▶ 𝐻 is a sum of basis functions, 𝜑1 and 𝜑2.
▶ 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)

▶ The prediction surface is a sum of other surfaces.

▶ Each basis function is a “building block”.



Visualizing the Basis Function 𝜑1

▶ 𝑤0+𝑤1|𝑥1−noon|



Visualizing the Basis Function 𝜑2

▶ 𝑤0 + 𝑤2|𝑥2 − 72∘|



Visualizing the Prediction Surface

= +



View: Function Approximation

x1 = time of day

x 2
 =
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▶ Find a function that is ≈ 1
near green points and ≈ −1
near red points.



What’s Wrong?

▶ We’ve discovered how to learn non-linear
patterns using linear prediction functions.
▶ Use non-linear basis functions to map to a feature
space.

▶ Something should bug you, though...


