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Lecture 18 Part 1

Radial Basis Functions



Recap

Linear prediction functions are limited.

Idea: transform the data to a new space where
prediction is “easier”.

To do so, we used basis functions.



Overview: Feature Mapping

Start with data in original space, RY.

Choose some basis functions, ¢4, ©,, ..., Q4

Map each data point to feature space RY:

X 5 (01(X), @5 (%), oeer g (X))

Fit linear prediction function in new space:

H(X) = Wy + W, (X) + W, ,(X)



H(X) = Wy + W4 (X) + W, ,(X)




Generic Basis Functions

The basis functions we used before were
engineered using domain knowledge.

They were specific to the problem at hand.
Very manual process!

Now: features that work for many problems.
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A common choice: ssian

basis functions:

- - Ne_iin2 /A2
o(X; [, 0) = e IxEI"/2
[i is the center.

o controls the “width”
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Gaussian Basis Function
If X is close to_;z, o(X; [, 0) is large.
If X is far from [, @(X; I, 0) is small.

Intuition: ¢ measures how “similar” X is to .
p me

Assumes that “similar” objects have close feature
vectors.




New Representation

Pick number of new featu res,g;’.

Pick centers for Gaussians ("), ..., i®, .., j(@)

Pick widths: 0, 0,..., 0,4 (usually all the same)

Define ith basis function:

0.(3) = e FHOII
’_/



New Representation

P(X) R,
©,: “similarity” of X to fi("
©,: “similarity” of X to fi¥

For an;@ture vector X € RY, map to vector

4 “similarity” of X to fi@)

Train linear classifier in this new representation.
E.g., by minimizing expected square loss.

expected square (0ss.



How many Gaussian basis functions would you use,

and where would you place them to create a new
representation for this data? ﬁ
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Placement
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Feature Space




Prediction Function

H(X) is a sum of Gaussians:

H(X) = Wy + Wy (X) + Wy y(X) + ...

“Nw=ii. 12 /A2 M- N2 /A2
= W0+W1e "X “1" /0 +W2e "X IJ2" /G
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What does the surface of the prediction function
look like?

Hint: what does the sum of 1-d Gaussians look like?




Prediction Function Surface




/S
An Interpretation

Basis function ¢; makes a “bump” in surface of H
w; adjusts the “prominance” of this bump

AN




Decision Boundary
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More Features

By increasing number of basis functions, we can
make more complex decision surfaces.
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Prediction Surface




Decision Boundary




Radial Basis Functions
Ga%ans are examples of radial basis functions.

O
Each basis function has a centel@

Value depends only on distance from center:

o(x;C) = f(IX - cll)




Another Radial Basis Function

e \
—

Multiquadric: ¢(X;C) = MX -¢Iyo
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Radial Basis Function Networks



Recap

Choose basis functions, ¢4, ..., 9,4

Transform data to new representation:
)_2 = ((p1 ()?)r (p2()_€)r eeey ‘-pd’()?))T
Train a linear classifier in this new space:

H(X) = Wy + W1(p1()?) + Wz‘Pz()?) ..ot Wd'(Pd'()?)



The Model

The  are basis functions.

H()_f) = Wy+W, (P1()?)+W2(P2()?)




Radial Basis Function Networks

If the basis functions are

radial basis functions, we

call this a radial basis

function (RBF) network.
=




Training

An RBF network has these parameters:
the parameters of each individual basis function:
{: (the center)
“possibly others (e.g., 0)
w;: the weights associated to each “new” feature

How do we choose the parameters?



First Idea

We can include all parameters in one big cost
function, optimize.

The cost function will generally be complicated,
non-convex and thus hard to optimize.



Another Idea

Break the process into two steps:

Find the parameters of the RBFs somehow.
Some optimization procedure, clustering, randomly, ...

Qaving fixed those parameters, optimize the w's.

Linear; easier to optimize.
—_————



Training




Training an RBF Network

Choose the for RBF, how many.
E.g., R Gaussian RBFs, @, ..., (.
- - e .

Pick the parameters of the RBFs somehow.

Create new data set by mapping
X 0 (04(X), s 0p(X))

Train a linear predictor Hy on new data set
That is, in feature space.



Making Predictions

Given a point X, map it to feature space:
X = (©01(X), ., @R(X)

Evaluate the trained linear predictor Hy in
feature space
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: : N
Choosing RBF Locations, /ﬂ




Recap

We map data to a new representation by first
choosing basis functions.

Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.

Requires choosing center for each basis function.



Prediction Function

Our prediction function H
Is a surface that is made
up of Gaussian “bumps”.

3\ _ 1 %=ii 12/ o2 %= 112 /o2
H(X) =W, + w,e IX-gq 117/ +w,e Ix-px 117/



Choosing Centers

Place the centers where
the value of the prediction
function should be
controlled.

Intuitively: place centers
where the data Is.
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Approaches
Every data point as a center
Randomly choose centers

Clustering



Approach #1: Every Data Point as a
Center
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Dimensionality
we'll hav@asis functions — one for each point.
That means we’ll have n features.

Fach feature vector ¢(X) € R™.

B(X) = ($1(X), o (R)s .., Pp(R))




This causes problems.

First: more likely to
overfit.

Second: computationally

expensive

Problems
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Computational Cost n

Suppose feature matrix X isn x d
n points in d dimensions

Time complexity of solvi@ G(n@
Usually d « n. But ifhis is O(n3).

Not great! If n = 10,000, then takes > 10 minutes.




Approach #2: A Random Sample

Idea: randomly choo@as centers.
_ . o. “z @
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Problem

May undersample/oversample a region.

More advanced sampling approaches exist.




Approach #3: Clustering

Group data points into clusters.

— e\

w are good places for RBFs.

For example, use kR-means clustering to pick k
\ N
centers.
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Neural Networks



Beyond RBFs

When training RBFs, we fixed the basis functions
before training the weights.

Representation learning was decoupled from
learning the prediction function.

. Gﬂoé‘ €3~6n0/
Now: learn representation and prediction

function together—




Linear Models




Generalizing Linear Models
The brain is a network of neurons.

The output of a neuron is used as an input to
another.

Idea: chain together multiple “neurons” into a
neural network.



Neural Network’ (OneﬂW

L0 \WW
@

Specifically, anorward neural netwe



Architecture

Neurons are organized into layers.
Input layer, output layer, and hidden layers.

Number of cells in input layer determined by
dimensionality of input feature vectors.

Number of cells in hidden layer(s) is determined
by you.

=y,
Output layer can have >1 neuron.



Architecture

Can have more than one hidden layer.
A network is “deep” if it has >1 hidden layer.

Hidden layers can have different number of
neurons.



Neural Network (Two Hidden Layers)




Network Weights
A neural network is a type of function.

Like a linear model, a NN is totally determined
by its weights.

T N

But there are often many more weights to learn!



Notation

Input is layer #0.

W) denotes weight
of connection
between neuron j in
layer (i - 1) and
neuron R in layer i

Layer weights are
2-d arrays.




Notation

Each hidden/output
neuron gets a

“dummy” input of 1.

jth node in ith layer
assigned a bias
weight of b}’

Biases for layer are
a vector: b%




Typically, we will not
draw the weights.

We will not draw the
dummy input, too,
but it is there.

Notation




&
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w =
B

Example




Example



Evaluation

These are “fully-connected, feed-forward”
networks with one output.

They are functions H(X) : RY —» R’

To evaluate H(X), compute result of layer i, use
as inputs for layer i + 1.






Evaluation as Matrix Multiplication

Let z ) be the output of node j in layer I.

Make a vector of these outputs: 20 = (z{), 2!, )T

Observe that () [W] 3(i-1) 4 p(i)






Each Layer is a Function

We can think of each layer as a function mapping
a vector to a vector.

H(M [W(1)] +pM
H(1) R? - R3 0‘

At

ol
H? : R3 - R’



NNs as Function Composition

The full NN is a composition of layer functions.




NNs as Function Composition

In general, if there k hidden layers:

H(X) = H(k+1) ( H(3) (H(Z) (H“)()?))) )



Show that:
HX) = WO ([WO] % + BO) + B = i - Aug(%)

for some appropriately-defined vector w.




Result

The composition of linear functions is again a
linear function.

The NNs we have seen so far are all equivalent to
linear models!

For NNs to be more useful, we will need to add
non-linearity.



Activations

So far, the output of a neuron has been a linear
function of its inputs:

Wy + W Xq + WoXs + ...
Can be arbitrarily large or small.

But real neurons are activated non-linearly.
E.g., saturation.



Idea

To add nonlinearity, we will apply a non-linear
activation function g to the output of each

hidden neuron (and sometimes the output
neuron).



Linear Activation

The linear activation is what we've been using.
/N

N

o(z) =z




Sigmoid Activation

The sigmoid models saturation in many natural

processes.
/N
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ReLU Activation

The Rectified Linear Unit (ReLU) tends to work

better in practice.
/N

g(z) = max{0, z}




Notation

z}i) is the linear activation before g is applied.
aj(.i) = g(z") is the actual output of the neuron.






Output Activations

The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.

In classification, sigmoid activation makes sense.

In regression, linear activation makes sense.



A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.
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Demo



Feature Map

We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map).

H(R) = Wo + Wy @y (%) + . + Wy y(R)

These basis functions are fixed before learning.

Downside: we have to choose ¢ somehow.



Learning a Feature Map

Interpretation: The hidden layers of a neural
network learn a feature map.



Each Layer is a Function

We can think of each layer as a function mapping

a vector to a vector.

H(Z) = [W(1)] +pM

HD : R? » R3
H@)(Z) = [W(2)] 3+H@
H? : R® —» R

X,

o>
o

@_.



Each Layer is a Function

The hidden layer performs a feature map from R? to R3.
The output layer makes a prediction in R3.

Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

Lo
—p



Demo

Train a deep network to classify the data below.

Hidden layers will learn a new feature map that
makes the data linearly separable.



We'll use three hidden
layers, with last having
two neurons.

We can see this new
representation!

Plug in X and see
activations of last hidden
layer.

Demo



Learning a New Representation




k..

Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Deep Learning

The NN has learned a new representation in
which the data is easily classified.



