DSC 1408 Representation Learning

Lecture 19 | Part 1

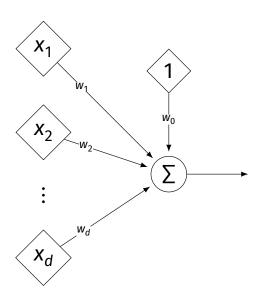
Neural Networks

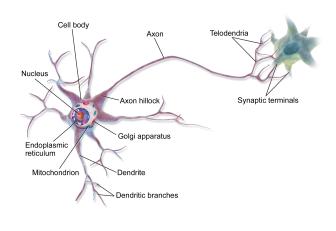
Beyond RBFs

- When training RBFs, we fixed the basis functions before training the weights.
- Representation learning was decoupled from learning the prediction function.
- Now: learn representation and prediction function together.

Linear Models

$$H(\vec{x}) = W_0 + W_1 X_1 + ... + W_d X_d$$



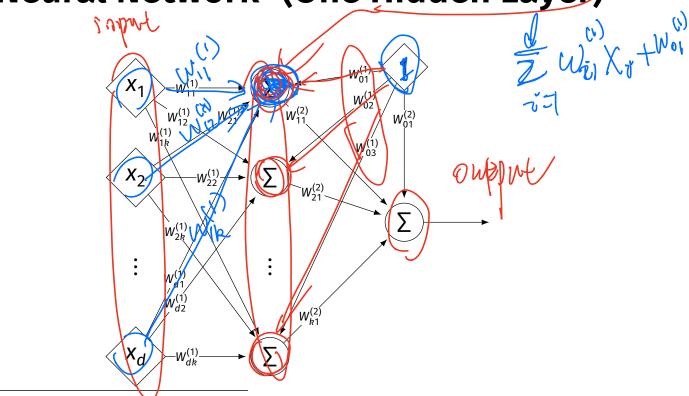


Generalizing Linear Models

The brain is a **network** of neurons.

► The output of a neuron is used as an input to another.

Idea: chain together multiple "neurons" into a neural network. Neural Network¹ (One Hidden Layer)



¹Specifically, a fully-connected, feed-forward neural network

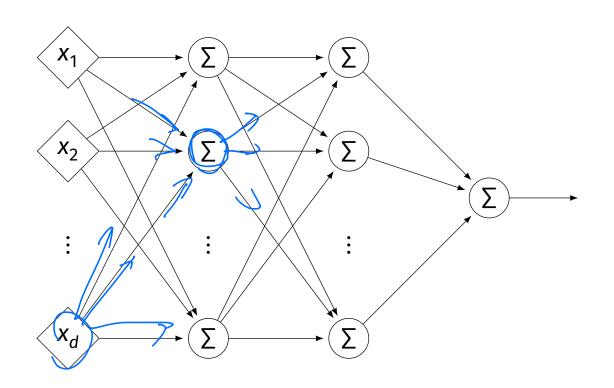
Architecture

- Neurons are organized into layers.
 - Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

- Can have more than one hidden layer.
 - A network is "deep" if it has >1 hidden layer.
- Hidden layers can have different number of neurons.

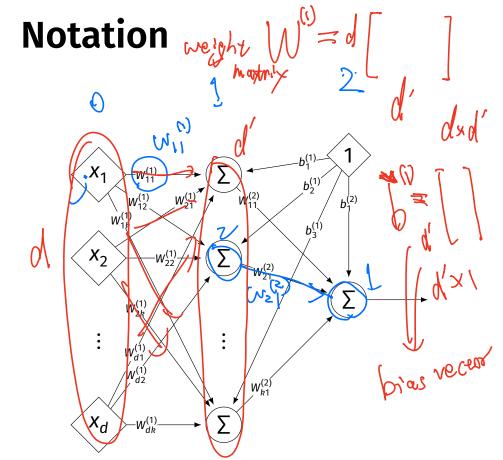
Neural Network (Two Hidden Layers)



Network Weights

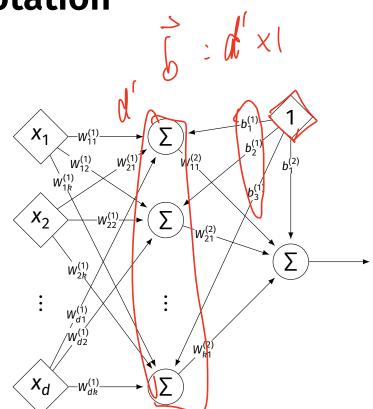
- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

- ► Input is layer #0.
- W_{jk}⁽ⁱ⁾ denotes weight of connection between neuron *j* in layer (*i* – 1) and neuron *k* in layer *i*
- Layer weights are 2-d arrays.



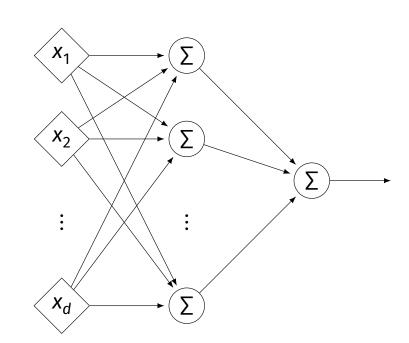
Notation

- Each hidden/output neuron gets a "dummy" input of 1.
- jth node in ith layer assigned a bias weight of b_i⁽ⁱ⁾
- ► Biases for layer are a vector: $\vec{b}^{(i)}$



Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.



Example

$$X_1$$
 X_2
 X_2
 X_2
 X_3
 X_4
 X_2
 X_4
 X_4
 X_5
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_8
 X_8
 X_9
 X_9

#10

Example

Evaluation

Evaluation
These are "fully-connected, feed-forward" networks with one output.

- ► They are functions $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate $H(\vec{x})$, compute result of layer i, use as inputs for layer i + 1.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} (1-j)^{N}$$

$$\frac{1}{3}$$
 $\frac{1}{3}$ $\frac{1}$

$$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}$$

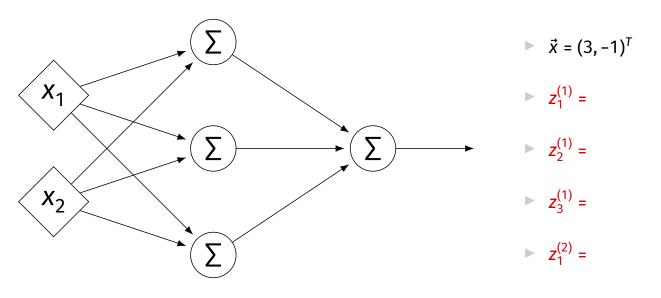
$$\sum_{-1\times3}$$
 $\sum_{+2\times-1}$

 $\vec{b}^{(2)} = (-4)^T$

Evaluation as Matrix Multiplication

- Let $z_j^{(i)}$ be the output of node j in layer i.
- Make a vector of these outputs: $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$
- Observe that $\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$

Example



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix} \qquad W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} \qquad \vec{b}^{(1)} = (3, -2, -2)^T \qquad \vec{b}^{(2)} = (-4)^T$$

Each Layer is a Function

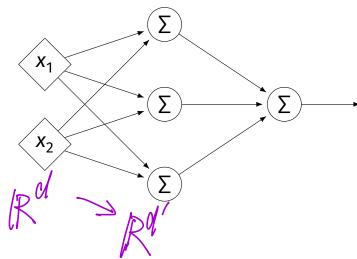
We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^{\mathsf{T}} \vec{z} + \vec{b}^{(1)}$$

$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

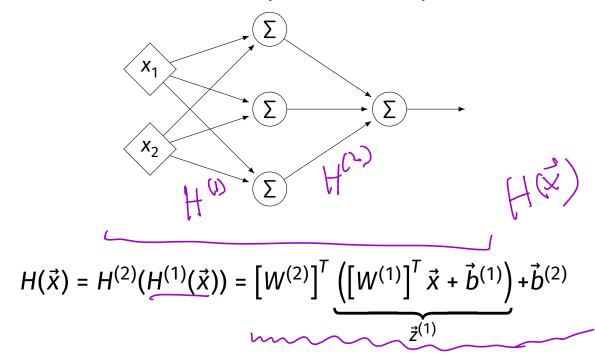
$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$\vdash H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$



NNs as Function Composition

► The full NN is a composition of layer functions.



NNs as Function Composition

► In general, if there *k* hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left(\cdots H^{(3)} \left(H^{(2)} \left(H^{(1)} (\vec{x}) \right) \right) \cdots \right)$$

Exercise

Show that:

$$H(\vec{x}) = [W^{(2)}]^T ([W^{(1)}]^T \vec{x} + \vec{b}^{(1)}) + \vec{b}^{(2)} = \vec{w} \cdot \text{Aug}(\vec{x})$$

for some appropriately-defined vector $\vec{\mathbf{w}}$.

Result

► The composition of linear functions is again a linear function.

The NNs we have seen so far are all equivalent to linear models!

For NNs to be more useful, we will need to add non-linearity.

Activations

So far, the output of a neuron has been a linear function of its inputs:

$$W_0 + W_1 X_1 + W_2 X_2 + ...$$

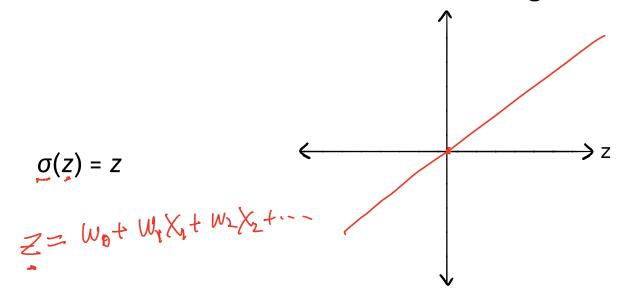
- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
 - E.g., saturation.

Idea

To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

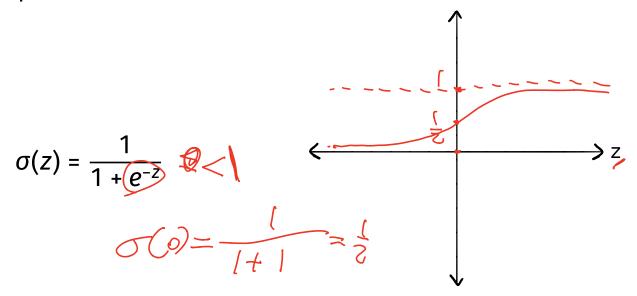
Linear Activation

► The linear activation is what we've been using.



Sigmoid Activation

► The **sigmoid** models saturation in many natural processes.



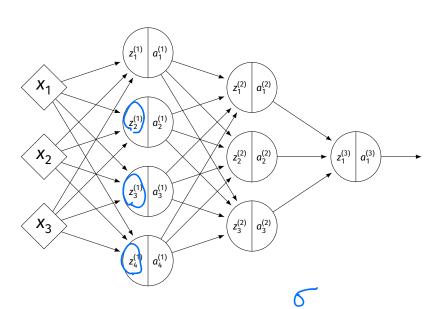
ReLU Activation

► The Rectified Linear Unit (ReLU) tends to work better in practice.

$$g(z) = \max\{0, z\}$$

$$\geq z$$

Notation



- $z_i^{(i)}$ is the linear activation before g is applied.
- $a_i^{(i)} = g(z^{(i)})$ is the actual output of the neuron.

Example



$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix} \qquad W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} \qquad \vec{b}^{(1)} = (3, -2, -2)^T \qquad \vec{b}^{(2)} = (-4)^T$$

Output Activations

- ► The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- ► In classification, **sigmoid** activation makes sense.
- In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

DSC 1408 Representation Learning

Lecture 19 | Part 2

Demo

Feature Map

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = W_0 + W_1 \phi_1(\vec{x}) + ... + W_k \phi_k(\vec{x})$$

- ► These basis functions are fixed **before** learning.
- **Downside:** we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

► Interpretation: The hidden layers of a neural network learn a feature map.

Each Layer is a Function

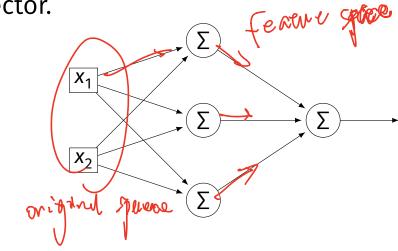
► We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^T \vec{z} + \vec{b}^{(1)}$$

$$H^{(1)}: \mathbb{R}^2 \to \mathbb{R}^3$$

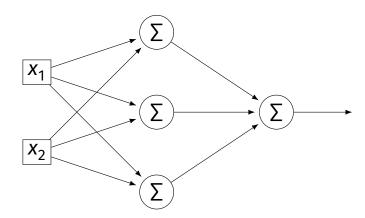
$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$



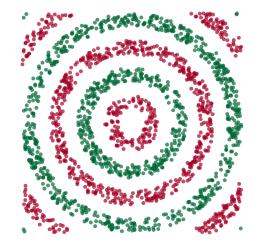
Each Layer is a Function

- ▶ The hidden layer performs a feature map from \mathbb{R}^2 to \mathbb{R}^3 .
- The output layer makes a prediction in \mathbb{R}^3 .
- Intuition: The feature map is learned so as to make the output layer's job "easier".



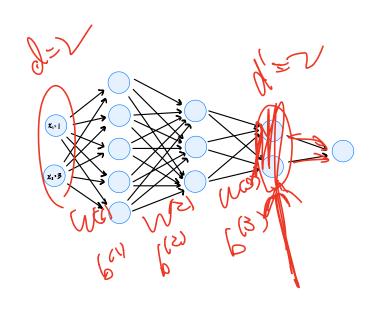
Demo

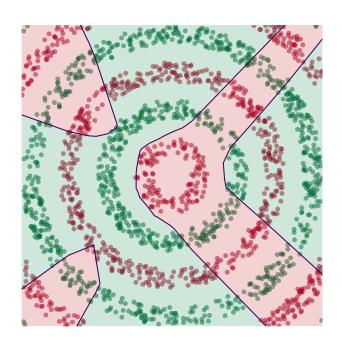
- Train a deep network to classify the data below.
- ► Hidden layers will learn a new feature map that makes the data linearly separable.

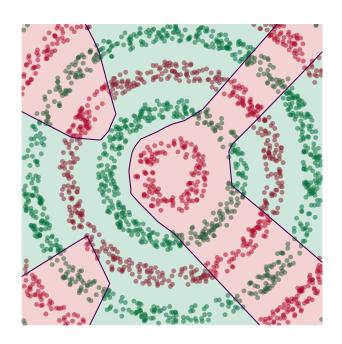


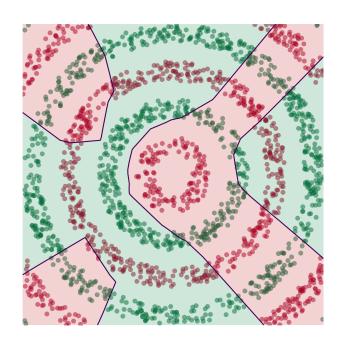
Demo

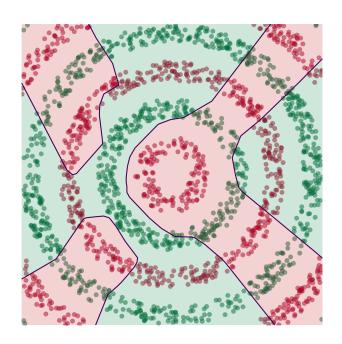
- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in \vec{x} and see activations of last hidden layer.

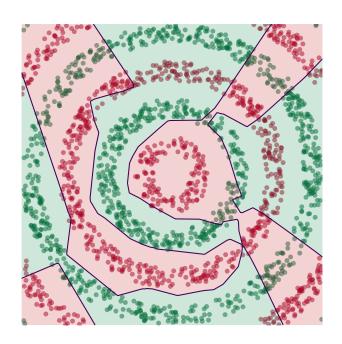


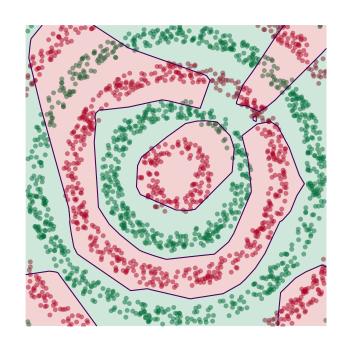


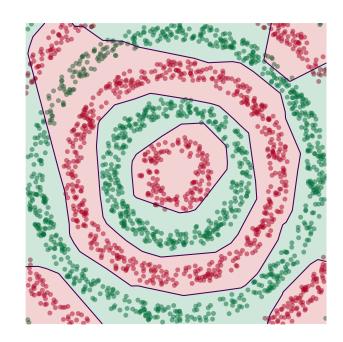




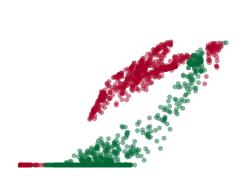




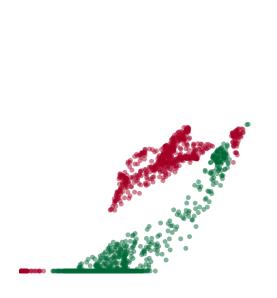




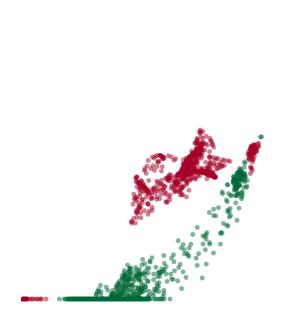




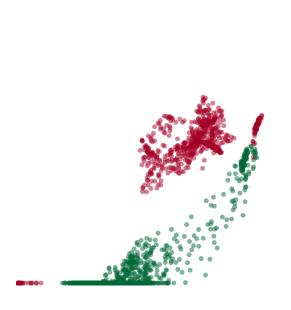




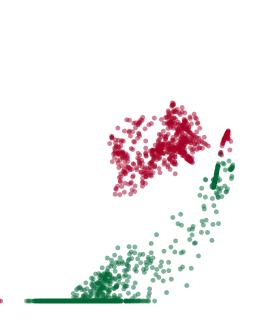


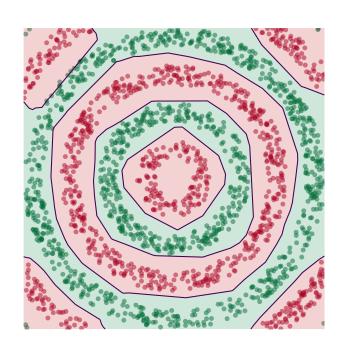


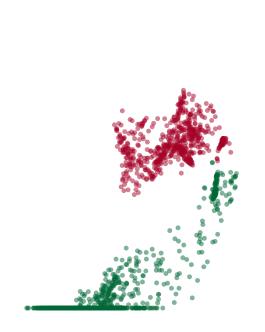


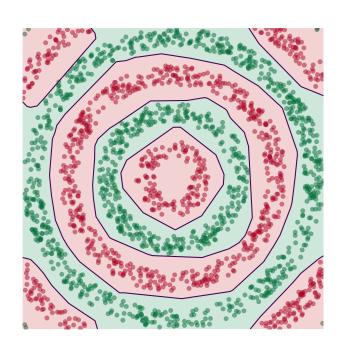


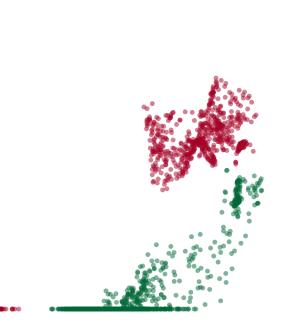


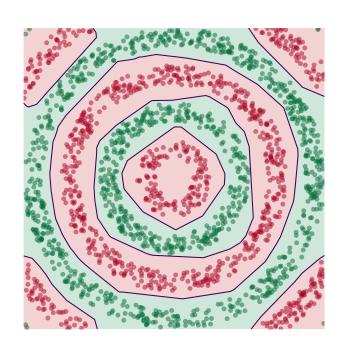


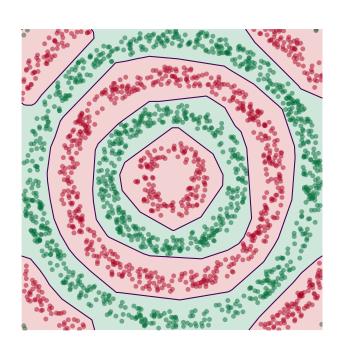


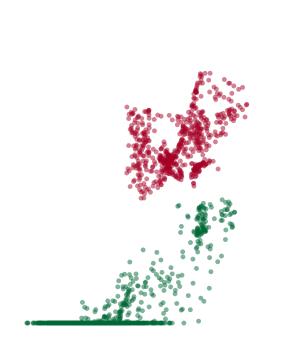


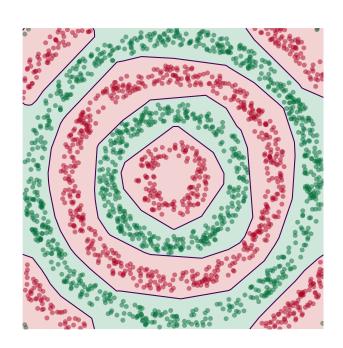


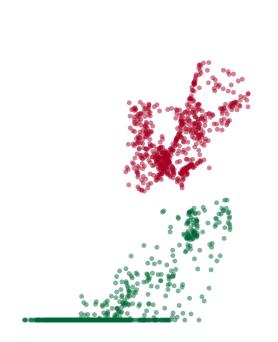


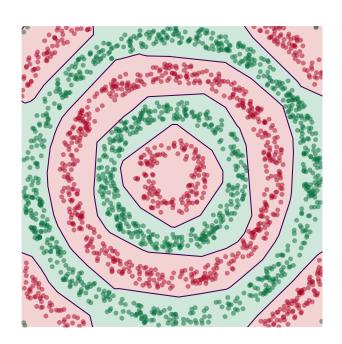


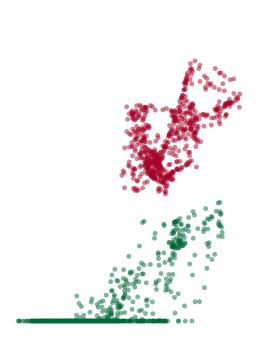


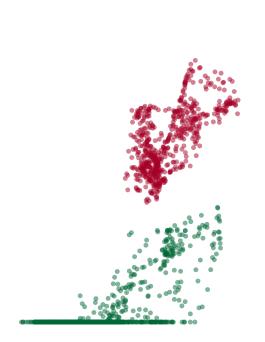




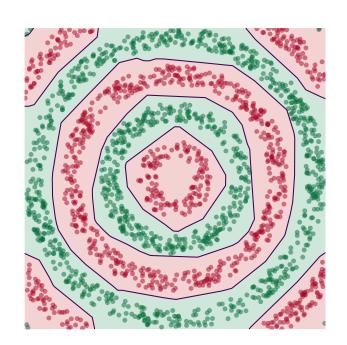




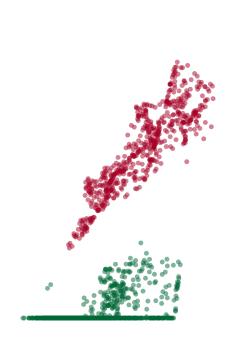




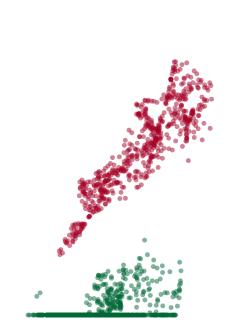


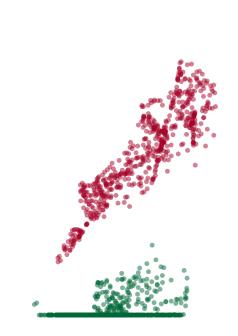


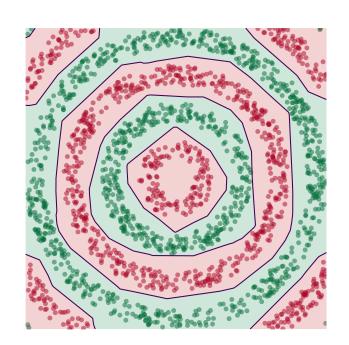






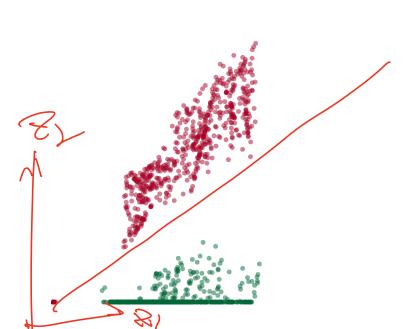


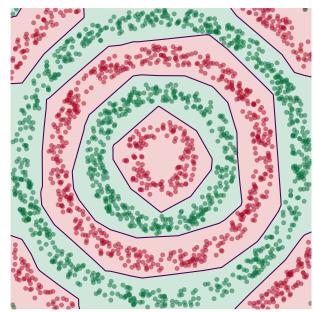












Deep Learning

► The NN has learned a new **representation** in which the data is easily classified.