
Lecture 19 | Part 1

Neural Networks

Beyond RBFs

▶ When training RBFs, we fixed the basis functions
before training the weights.

▶ Representation learning was decoupled from
learning the prediction function.

▶ Now: learn representation and prediction
function together.

Linear Models

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

𝑥1

𝑥2

𝑥𝑑

⋮
∑

1
𝑤1

𝑤2

𝑤𝑑

𝑤0

Generalizing Linear Models

▶ The brain is a network of neurons.

▶ The output of a neuron is used as an input to
another.

▶ Idea: chain together multiple “neurons” into a
neural network.

Neural Network1 (One Hidden Layer)

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

1
𝑊 (1)
11

𝑊 (1)
12

𝑊 (1)
1𝑘

𝑊 (1)
21

𝑊 (1)
22

𝑊 (1)
2𝑘

𝑊 (1)
𝑑1

𝑊 (1)
𝑑2

𝑊 (1)
𝑑𝑘

𝑊 (2)
11

𝑊 (2)
21

𝑊 (2)
𝑘1

𝑊 (1)
01

𝑊 (1)
02

𝑊 (1)
03

𝑊 (2)
01

1Specifically, a fully-connected, feed-forward neural network

Architecture

▶ Neurons are organized into layers.
▶ Input layer, output layer, and hidden layers.

▶ Number of cells in input layer determined by
dimensionality of input feature vectors.

▶ Number of cells in hidden layer(s) is determined
by you.

▶ Output layer can have >1 neuron.

Architecture

▶ Can have more than one hidden layer.
▶ A network is “deep” if it has >1 hidden layer.

▶ Hidden layers can have different number of
neurons.

Neural Network (Two Hidden Layers)

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

∑

∑

⋮

∑

Network Weights

▶ A neural network is a type of function.

▶ Like a linear model, a NN is totally determined
by its weights.

▶ But there are often many more weights to learn!

Notation

▶ Input is layer #0.

▶ 𝑊 (𝑖)
𝑗𝑘 denotes weight

of connection
between neuron 𝑗 in
layer (𝑖 − 1) and
neuron 𝑘 in layer 𝑖

▶ Layer weights are
2-d arrays.

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

1
𝑊 (1)
11

𝑊 (1)
12

𝑊 (1)
1𝑘

𝑊 (1)
21

𝑊 (1)
22

𝑊 (1)
2𝑘

𝑊 (1)
𝑑1

𝑊 (1)
𝑑2

𝑊 (1)
𝑑𝑘

𝑊 (2)
11

𝑊 (2)
21

𝑊 (2)
𝑘1

𝑏(1)1

𝑏(1)2

𝑏(1)3

𝑏(2)1

Notation

▶ Each hidden/output
neuron gets a
“dummy” input of 1.

▶ 𝑗th node in 𝑖th layer
assigned a bias
weight of 𝑏(𝑖)𝑗

▶ Biases for layer are
a vector: �⃗�(𝑖)

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

1
𝑊 (1)
11

𝑊 (1)
12

𝑊 (1)
1𝑘

𝑊 (1)
21

𝑊 (1)
22

𝑊 (1)
2𝑘

𝑊 (1)
𝑑1

𝑊 (1)
𝑑2

𝑊 (1)
𝑑𝑘

𝑊 (2)
11

𝑊 (2)
21

𝑊 (2)
𝑘1

𝑏(1)1

𝑏(1)2

𝑏(1)3

𝑏(2)1

Notation

▶ Typically, we will not
draw the weights.

▶ We will not draw the
dummy input, too,
but it is there.

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

Example

𝑥1

𝑥2

∑

∑

∑

∑

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
)

�⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

Example

𝑥1

𝑥2

∑

∑

∑

∑

∑

∑

∑

𝑊 (1) = (2 −1 −3 0
4 5 −7 2) 𝑊 (2) = (

1 2
−4 3
−6 −2
3 4

) 𝑊 (3) = (−1 5)

�⃗�(1) = (3, 6, −2, −2)𝑇 �⃗�(2) = (−4, 0)𝑇 �⃗�(3) = (1)𝑇

Evaluation

▶ These are “fully-connected, feed-forward”
networks with one output.

▶ They are functions 𝐻(⃗𝑥) ∶ ℝ𝑑 → ℝ1

▶ To evaluate 𝐻(⃗𝑥), compute result of layer 𝑖, use
as inputs for layer 𝑖 + 1.

Example

𝑥1

𝑥2

∑

∑

∑

∑

▶ ⃗𝑥 = (3, −1)𝑇

▶ 𝑧(1)1 =

▶ 𝑧(1)2 =

▶ 𝑧(1)3 =

▶ 𝑧(2)1 =

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
) �⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

Evaluation as Matrix Multiplication

▶ Let 𝑧(𝑖)𝑗 be the output of node 𝑗 in layer 𝑖.

▶ Make a vector of these outputs: ⃗𝑧(𝑖) = (𝑧(𝑖)1 , 𝑧
(𝑖)
2 , …)𝑇

▶ Observe that ⃗𝑧(𝑖) = [𝑊 (𝑖)]𝑇 ⃗𝑧(𝑖−1) + �⃗�(𝑖)

Example

𝑥1

𝑥2

∑

∑

∑

∑

▶ ⃗𝑥 = (3, −1)𝑇

▶ 𝑧(1)1 =

▶ 𝑧(1)2 =

▶ 𝑧(1)3 =

▶ 𝑧(2)1 =

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
) �⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

Each Layer is a Function

▶ We can think of each layer as a function mapping
a vector to a vector.

▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+�⃗�(1)

▶ 𝐻(1) ∶ ℝ2 → ℝ3

▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+�⃗�(2)

▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1

𝑥2

∑

∑

∑

∑

NNs as Function Composition
▶ The full NN is a composition of layer functions.

𝑥1

𝑥2

∑

∑

∑

∑

𝐻(⃗𝑥) = 𝐻(2)(𝐻(1)(⃗𝑥)) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + �⃗�(1))⏟⏟⏟⏟⏟⏟⏟
⃗𝑧(1)

+�⃗�(2)

NNs as Function Composition

▶ In general, if there 𝑘 hidden layers:

𝐻(⃗𝑥) = 𝐻(𝑘+1) (⋯𝐻(3) (𝐻(2) (𝐻(1)(⃗𝑥))) ⋯)

Exercise

Show that:

𝐻(⃗𝑥) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + �⃗�(1)) + �⃗�(2) = �⃗� ⋅ Aug(⃗𝑥)

for some appropriately-defined vector �⃗�.

Result

▶ The composition of linear functions is again a
linear function.

▶ The NNs we have seen so far are all equivalent to
linear models!

▶ For NNs to be more useful, we will need to add
non-linearity.

Activations

▶ So far, the output of a neuron has been a linear
function of its inputs:

𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …

▶ Can be arbitrarily large or small.

▶ But real neurons are activated non-linearly.
▶ E.g., saturation.

Idea

▶ To add nonlinearity, we will apply a non-linear
activation function 𝑔 to the output of each
hidden neuron (and sometimes the output
neuron).

Linear Activation

▶ The linear activation is what we’ve been using.

𝜎(𝑧) = 𝑧 z

Sigmoid Activation

▶ The sigmoid models saturation in many natural
processes.

𝜎(𝑧) = 1
1 + 𝑒−𝑧

z

ReLU Activation

▶ The Rectified Linear Unit (ReLU) tends to work
better in practice.

𝑔(𝑧) = max{0, 𝑧} z

Notation

𝑥1

𝑥2

𝑥3

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(1)4 𝑎(1)4

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(3)1 𝑎(3)1

▶ 𝑧(𝑖)𝑗 is the linear activation before 𝑔 is applied.
▶ 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)) is the actual output of the neuron.

Example

𝑥1

𝑥2

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1

▶ 𝑔 = ReLU
▶ Linear output
▶ ⃗𝑥 = (3, −1)𝑇
▶ 𝑧(1)1 =
▶ 𝑎(1)1 =
▶ 𝑧(1)2 =
▶ 𝑎(1)2 =
▶ 𝑧(1)3 =
▶ 𝑎(1)3 =
▶ 𝑧(2)1 =

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
) �⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

Output Activations

▶ The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.

▶ In classification, sigmoid activation makes sense.

▶ In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.

Lecture 19 | Part 2

Demo

Feature Map

▶ We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map).

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + … + 𝑤𝑘𝜙𝑘(⃗𝑥)

▶ These basis functions are fixed before learning.

▶ Downside: we have to choose �⃗� somehow.

Learning a Feature Map

▶ Interpretation: The hidden layers of a neural
network learn a feature map.

Each Layer is a Function

▶ We can think of each layer as a function mapping
a vector to a vector.

▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+�⃗�(1)

▶ 𝐻(1) ∶ ℝ2 → ℝ3

▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+�⃗�(2)

▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1

𝑥2

∑

∑

∑

∑

Each Layer is a Function
▶ The hidden layer performs a feature map from ℝ2 to ℝ3.
▶ The output layer makes a prediction in ℝ3.
▶ Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

𝑥1

𝑥2

∑

∑

∑

∑

Demo
▶ Train a deep network to classify the data below.

▶ Hidden layers will learn a new feature map that
makes the data linearly separable.

Demo
▶ We’ll use three hidden
layers, with last having
two neurons.

▶ We can see this new
representation!

▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Deep Learning

▶ The NN has learned a new representation in
which the data is easily classified.

