

Lecture 20 | Part 1

Training Neural Networks

Training

How do we learn the weights of a (deep) neural network?

Remember...

► How did we learn the weights in linear least squares regression?

Empirical Risk Minimization

- 0. Collect a training set, $\{(\vec{x}^{(i)}, y_i)\}$
- 1. Pick the form of the prediction function, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

Remember: Linear Least Squares

- 0. Pick the form of the prediction function, H.
 - ► E.g., linear: $H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d = Aug(\vec{x}) \cdot \vec{w}$
- 1. Pick a loss function.
 - E.g., the square loss.
- 2. Minimize the empirical risk w.r.t. that loss:

$$R_{sq}(\vec{w}) \neq \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (Aug(\vec{x}^{(i)}) \cdot \vec{w} - y_i)$$

Minimizing Risk

- To minimize risk, we often use vector calculus.
 - ► Either set $\nabla_{\vec{w}} R(\vec{w}) = 0$ and solve...
 - Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w}).$
- Recall, $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$ $\vec{\omega} \in \mathbb{R}^{k+1}$

In General

- Let ℓ be the loss function, let $H(\vec{x}; \vec{w})$ be the prediction function.
- The empirical risk: $\frac{\partial R}{\partial W} = \frac{\partial R}{\partial H} = \frac{\partial H}{\partial W}$

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Gradient of H

- ► To minimize risk, we want to compute $\nabla_{\vec{w}} R$.
- To compute $\nabla_{\vec{w}} R$, we want to compute $\nabla_{\vec{w}} H$.
- This will depend on the form of H. This will depend on the form of H.

Example: Linear Model

Suppose H is a linear prediction function:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d$$

What is
$$\nabla_{\vec{w}}H$$
 with respect to \vec{w} ?
$$= (\nabla_{\vec{w}}H, \nabla_{\vec{w}}H, \nabla_{\vec{w}}H, \nabla_{\vec{w}}H) \in \mathbb{R}^{d+1}$$

$$= (\nabla_{\vec{w}}H, \nabla_{\vec{w}}H, \nabla_{\vec{w}}H,$$

Example: Linear Model

► Consider $\partial H/\partial w_1$.

Example: Neural Networks

- Suppose H is a neural network (with nonlinear activations).
- ightharpoonup What is ∇H ?
 - It's more complicated...

Parameter Vectors

- It is often useful to pack all of the network's weights into a parameter vector, \vec{w} .
- Order is arbitrary:

$$\vec{W} = (W_{11}^{(1)}, W_{12}^{(1)}, ..., b_1^{(1)}, b_2^{(1)}, W_{11}^{(2)}, W_{12}^{(2)}, ..., b_1^{(2)}, b_2^{(2)}, ...)^T$$

- ► The network is a function $H(\vec{x}; \vec{w})$.
- ▶ Goal of learning: find the "best" \vec{w} .

Gradient of Neural Network

- Plugging a data point, \vec{x} , and a parameter vector, $\rightarrow \vec{V}$ \vec{W} , into $\nabla_{\vec{W}}H$ "evaluates the gradient", results in a vector, same size as \vec{W} .

Exercise Suppose $W_{11}^{(1)} = -2$, $W_{21}^{(1)} = -5$, $W_{31}^{(1)} = 2$ and $X = (3, 2, -2)^T$ and all biases are 0. ReLU activations are used. What is $\partial H/\partial W_{11}^{(1)}(\vec{x},\vec{w})? \approx 0$ $z_1^{(2)}$

► Consider $\partial H/\partial W_{11}^{(1)}$:

A Better Way

- Computing the gradient is straightforward...
- But can involve a lot of repeated work.
- Backpropagation is an algorithm for efficiently computing the gradient of a neural network.

DSC 1408 Representation Learning

Lecture 20 | Part 2

Backpropagation

Gradient of a Network

- ▶ We want to compute the gradient $\nabla_{\vec{w}}H$.
 - ► That is, $\partial H/\partial W_{ii}^{(\ell)}$ and $\partial H/\partial b_i^{(\ell)}$ for all valid i, j, ℓ .
- A network is a composition of functions.
- We'll make good use of the chain rule.

Recall: The Chain Rule

$$\frac{d}{dx}f(g(x)) = \frac{df}{dg}\frac{dg}{dx}$$
$$= f'(g(x))g'(x)$$

Some Notation

We'll consider an arbitrary node in layer \(\ell \) of a neural network.

- Let *g* be the activation function.
- \triangleright n_{ℓ} denotes the number of nodes in layer ℓ .

Arbitrary Node

Claim #1
$$\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_{j}^{(\ell)}} a_{i}^{(\ell-1)}$$

$$w_{ij}^{(\ell-1)} a_{i}^{(\ell-1)}$$

$$w_{ij}^{(\ell-1)} a_{i}^{(\ell-1)}$$

$$w_{ij}^{(\ell-1)} a_{i}^{(\ell-1)}$$

$$W_{ij}^{(\ell)} \qquad W_{j1}^{(\ell-1)} \qquad \vdots \qquad \qquad \vdots$$

 $Z_{n_{\ell+1}}^{(\ell+1)}$

 $a_{n_{\ell+1}}^{(\ell+1)}$

 $Z_{j}(4) = \alpha_{j}(4-1) \cdot w_{j}(4) \cdot b_{j}^{(\ell)}$ $= \alpha_{j}(4-1) \cdot w_{j}(4) + C \cdot b_{j}^{(\ell)}$ $= \alpha_{j}(4-1) \cdot w_{j}(4) + C \cdot b_{j}^{(\ell)}$

 $a_i^{(\ell-1)}$

 $W_{ij}^{(\ell)}$

 $b_j^{(\ell)}$

 $W_{jn_{\ell+1}}^{(\ell+1)}$

 $Z_i^{(\ell-1)}$

$$\frac{\partial H}{\partial z_{j}^{(\ell)}} = \frac{\partial H}{\partial a_{j}^{(\ell)}} g'(z_{j}^{\ell})$$

 $a_{n_{\ell+1}}^{(\ell+1)}$

 $Z_{n_{\ell+1}}^{(\ell+1)}$

$$\frac{\partial H}{\partial z_{j}^{(\ell)}} = \frac{\partial H}{\partial a_{j}^{(\ell)}} g'(z_{j}^{\ell})$$

$$\alpha_{j}^{(\ell)} = q(z_{j}^{(\ell)})$$

$$\frac{\partial H}{\partial z_{j}^{(\ell)}} = \frac{\partial H}{\partial a_{j}^{(\ell)}} g'(z_{j}^{\ell})$$

$$W_{j1}^{(\ell+1)} = \frac{\partial H}{\partial a_{j}^{(\ell)}} g'(z_{j}^{\ell})$$

$$Q_{j}^{(\ell)} = Q_{j}^{(\ell)} (z_{j}^{\ell})$$

$$Q_{j}^{(\ell)} = Q_{j}^{(\ell)} (z_{j}^{\ell})$$

$$W_{j_1}^{(\ell)} = \overline{\partial a_j^{(\ell)}} g(z_j)$$

$$Q_j(\xi) = g(z_j(\xi))$$

$$W_{j_1}^{(\ell+1)} = \overline{\partial a_j^{(\ell+1)}} a_1^{(\ell+1)}$$

$$E = mox(0, Z_j(\xi))$$

Claim #3
$$Z(Ut) = W_{j}(Ut)$$

$$Z(Ut) = W_$$

Exercise

What is $\partial H/\partial b_j^{(\ell)}$?

General Formulas

For any node in any neural network¹, we have the following recursive formulas:

$$\frac{\partial H}{\partial a_{j}^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_{k}^{(\ell+1)}} W_{jk}^{(\ell+1)}$$

$$\frac{\partial H}{\partial z_{j}^{(\ell)}} = \frac{\partial H}{\partial a_{j}^{(\ell)}} g'(z_{j}^{\ell})$$

$$\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_{j}^{(\ell)}} a_{i}^{(\ell-1)}$$

$$\frac{\partial H}{\partial b_{j}^{(\ell)}} = \frac{\partial H}{\partial z_{j}^{(\ell)}}$$

¹Fully-connected, feedforward network

Main Idea

The derivatives in layer ℓ depend on derivatives in layer $\ell + 1$.

Backpropagation

LZ N

- Idea: compute the derivatives in last layers, first.
- ► That is:
 - Compute derivatives in last layer, \(\extit{\epsilon}; \) store them.
 - ▶ Use to compute derivatives in layer ℓ 1.
 - ▶ Use to compute derivatives in layer ℓ 2.
 - **...**

Backpropagation

Given an input \vec{x} and a current parameter vector \vec{w} :

- 1. Evaluate the network to compute $z_i^{(\ell)}$ and $a_i^{(\ell)}$ for all nodes.
- 2. For each layer \(\ext{from last to first:} \)

► Compute
$$\frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$
► Compute $\frac{\partial H}{\partial b_i^{(\ell)}} = \frac{\partial H}{\partial z_i^{(\ell)}}$

Compute
$$\frac{\partial H'}{\partial b_i^{(\ell)}} = \frac{\partial \dot{H}}{\partial z_i^{(\ell)}}$$

Compute the entries of the gradient given:

$$W^{(1)} = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ $W^{(3)} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ $\vec{x} = (2, 1)^T$ $g(z) = \text{ReLU}$

$$\frac{\partial H}{\partial a_j^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_k^{(\ell+1)}} W_{jk}^{(\ell+1)} \qquad \frac{\partial H}{\partial z_j^{(\ell)}} = \frac{\partial H}{\partial a_j^{(\ell)}} g'(z_j^{\ell}) \qquad \frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$

Compute the entries of the gradient given:

$$W^{(1)} = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ $W^{(3)} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ $\vec{x} = (2, 1)^T$ $g(z) = \text{ReLU}$

$$\frac{\partial H}{\partial a_j^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_k^{(\ell+1)}} W_{jk}^{(\ell+1)} \qquad \frac{\partial H}{\partial z_j^{(\ell)}} = \frac{\partial H}{\partial a_j^{(\ell)}} g'(z_j^{\ell}) \qquad \frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$

Compute the entries of the gradient given:

$$W^{(1)} = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ $W^{(3)} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ $\vec{x} = (2, 1)^T$ $g(z) = \text{ReLU}$

$$\frac{\partial H}{\partial a_j^{(\ell)}} = \sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_k^{(\ell+1)}} W_{jk}^{(\ell+1)} \qquad \frac{\partial H}{\partial z_j^{(\ell)}} = \frac{\partial H}{\partial a_j^{(\ell)}} g'(z_j^{\ell}) \qquad \frac{\partial H}{\partial W_{ij}^{(\ell)}} = \frac{\partial H}{\partial z_j^{(\ell)}} a_i^{(\ell-1)}$$

Aside: Derivative of ReLU

$$g(z) = \max\{0, z\}$$

$$g'(z) = \begin{cases} 0, & z < 0 \\ 1, & z > 0 \end{cases}$$