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Lecture 20 Part1

Training Neural Networks



Training

How do we learn the weights of a (deep) neural

network? W @ L
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Remember...

How did we learn the weights in linear least
squares regression?




Empirical Risk Minimization
Collect a training set, {(X", y.)}

Pick the form of the prediction function, H.
—~—

Pick a loss function.

Minimize the empirical risk w.rt. that loss.



Remember: Linear Least Squares

Pick the form of the prediction function, k
E.g., linear: H(X; W) = wy + w,X; +...

Pick a loss function.

£ g, the square loss

Minimize the empirical risk w.rt. that loss:
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»  Minimizing Risk

To minimize risk, we often use vector calculus.
Either set V.R(W) = 0 and solve...
Or use qradlent descent walk in %Qosne dlrectlon of
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In General

Let £ be the loss function, let H(X; w) be the
prediction function.




Gradient of H

To minimize risk, we want to compute VR.

To compute VR, we want to compute

This will depend on the formof H. p <\sl} = Q&Jg
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Example: Linear Model

Suppose H is a linear prediction function:

H(X; W) = Wy + WyXq + ... + WyXy
= —O

What is V;H with respect to w? o/
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Example: Linear Model

Consider oH /ow,* b
X, \Wz\\ VT
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Example: Neural Networks

Suppose H is a neural network (with nonlinear
activations).

What is VH?
It's more complicated...




Parameter Vectors

It is often useful to pack all of the network’s
weights into a parameter vector, w.

Order is arbitrary:

" 1) 1,01 1) 1 (1) 1/2) (2 2) (2
(i W, WD, .. b0, b0, W, W), ..., b2, 6@, )7

The network is a function H(X; w).

Goal of learning: find the “best” w.



o) Cpl’
Gradient of Neural Network ‘ﬁ

tH (><

(i -
Plugg@ata point, X, and a parameter vector, —> [RC[

V;H is avector-valued function.

W, int@ VH)‘evaluates the gradient”, results in a
vector, e size as w.




Suppose WSV = -2, Wl = -
(3,2,-2)" and all biases are
used. What is oH /aW{D(X, W)?

5,WS) = 2 and
RelLU activations ar
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Example

Consider aH/aWﬂ):




A Better Way

Computing the gradient is straightforward...
But can involve a lot of repeated work.

Mis an algorithm for efficiently
computing the gradient of a neural network.
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Lecture 20 Part 2

Backpropagation



Gradient of a Network

We want to compute the gradient V;H.
That is, oH /oW and oH/ob{" for all valid i,j, .

A network is a composition of functions.

We'll make good use of the chain rule.



Recall: The Chain Rule

o1 A
d df dg . oK
axot0 {d’—g_ﬂ >4

= f(g(x)) g'(x)




Some Notation

We'll consider an arbitrary node in layerﬁ/ofa
neural network.

Let g be the activation function.

n, denotes the number of nodes in layer #.



Arbitrary Node
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What is oH /ab,@"’?
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General Formulas

For any node in any neural network’, we have the
following recursiye formulas:
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TFully-connected, feedforward network



Main Idea

The derivatives in layer # depend on derivatives in
layer £ + 1.




Backpropagation
£,=N

Idea: compute the derivatives in last layers, first.

That is:
Compute derivatives in last layer, #; store them.
Use to compute derivatives in layer £ - 1.
Use to compute derivatives in layer ¢ - 2.



Backpropagation

Given an input X and a current parameter vector w:

Evaluate the network to compute 2 and a!” for all nodes.
For each layer ? from last to first:

OH _ 5 M1 _oH (2+1)
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Example

Compute the entries of the gradient given:
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Aside: Derivative of ReLU

/N

g(z) = max{0, z}

N

0, z<0
1, z>0




