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Gradient Descent for NN Training

 



Empirical Risk Minimization

0. Collect a training set, {( ⃗𝑥(𝑖), 𝑦𝑖)}
1. Pick the form of the prediction function, 𝐻.▶ E.g., a neural network, 𝐻.
2. Pick a loss function.

3. Minimize the empirical risk w.r.t. that loss.



Minimizing Risk▶ To minimize risk, we often use vector calculus.▶ Either set ∇�⃗�𝑅(�⃗�) = 0 and solve...▶ Or use gradient descent: walk in opposite direction of∇�⃗�𝑅(�⃗�).▶ Recall, ∇�⃗�𝑅(�⃗�) = (𝜕𝑅/𝜕𝑤0, 𝜕𝑅/𝜕𝑤1, … , 𝜕𝑅/𝜕𝑤𝑑)𝑇



In General▶ Let ℓ be the loss function, let 𝐻( ⃗𝑥; �⃗�) be the
prediction function.▶ The empirical risk:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Using the chain rule:∇�⃗�𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇�⃗�𝐻( ⃗𝑥(𝑖); �⃗�)



Training Neural Networks▶ For neural networks with nonlinear activations,
the risk 𝑅(�⃗�) is typically complicated.▶ The mininimizer cannot be found directly.▶ Instead, we use iterative methods, such as
gradient descent.



Iterative Optimization▶ To minimize a function 𝑓( ⃗𝑥), we may try to
compute ∇⃗𝑓( ⃗𝑥); set to 0; solve.▶ Often, there is no closed-form solution.▶ How do we minimize 𝑓?



Example▶ Consider 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2.



Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system?2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0



Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system? Not in closed form.2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0



Idea

▶ Apply an iterative approach.▶ Start at an arbitrary location.▶ “Walk downhill”, towards
minimum.



Which way is down?▶ Consider a differentiable
function 𝑓(𝑥, 𝑦).▶ We are standing at 𝑃 = (𝑥0, 𝑦0).▶ In a small region around 𝑃, 𝑓
looks like a plane.▶ Slope of plane in 𝑥, 𝑦
directions:𝜕𝑓𝜕𝑥(𝑥0, 𝑦0) 𝜕𝑓𝜕𝑦(𝑥0, 𝑦0)



The Gradient▶ Let 𝑓 ∶ ℝ𝑑 → ℝ be differentiable. The gradient of𝑓 at ⃗𝑥 is defined:∇⃗𝑓( ⃗𝑥) = ( 𝜕𝑓𝜕𝑥1 ( ⃗𝑥), 𝜕𝑓𝜕𝑥2 ( ⃗𝑥), … , 𝜕𝑓𝜕𝑥𝑑 ( ⃗𝑥))𝑇▶ Note: ∇⃗𝑓( ⃗𝑥) is a function mapping ℝ𝑑 → ℝ𝑑.



Which way is down?

▶ ∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest ascent at (𝑥0, 𝑦0).▶ −∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest descent at (𝑥0, 𝑦0).



Gradient Properties▶ The gradient is used in the linear approximation
of 𝑓:𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + �⃗� ⋅ ∇⃗𝑓(𝑥0, 𝑦0)▶ Important properties:▶ ∇⃗𝑓( ⃗𝑥) points in direction of steepest ascent at ⃗𝑥.▶ −∇⃗𝑓( ⃗𝑥) points in direction of steepest descent at ⃗𝑥.▶ In directions orthogonal to ∇⃗𝑓( ⃗𝑥), 𝑓 does not change!▶ ‖∇⃗𝑓( ⃗𝑥)‖ measures steepness of ascent



Gradient Descent▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.▶ Until convergence, repeat:▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓( ⃗𝑥(𝑖)).▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓( ⃗𝑥(𝑖)).▶ When do we stop?▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.



def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x





Backprop Revisited▶ The weights of a neural network can be trained
using gradient descent.▶ This requires the gradient to be calculated
repeatedly; this is where backprop enters.▶ Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.



Backprop Revisited▶ Consider training a NN using the square loss:∇�⃗�𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇�⃗�𝐻( ⃗𝑥(𝑖); �⃗�)= 2𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖) ∇�⃗�𝐻( ⃗𝑥(𝑖); �⃗�)



Backprop Revisited▶ Interpretation:∇�⃗�𝑅(�⃗�) = 2𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)⏟
Error

∇�⃗�𝐻( ⃗𝑥(𝑖); �⃗�)⏟
Blame▶ When used in SGD, backprop “propagates error

backward” in order to update weights.



Difficulty of Training NNs▶ Gradient descent is guaranteed to find optimum
when objective function is convex.1

1Assuming it is properly initialized



Difficulty of Training NNs▶ When activations are non-linear, neural network
risk is highly non-convex:



Non-Convexity▶ When 𝑅 is non-convex, GD can get “stuck” in local
minima.▶ Solution depends on initialization.▶ More sophisticated optimizers, using
momentum, adaptation, better initialization, etc.▶ Adagrad, RMSprop, Adam, etc.



Difficulty of Training (Deep) NNs▶ Deep networks can suffer from the problem of
vanishing gradients: if 𝑤 is a weight at the
“front” of the network, 𝜕𝐻/𝜕𝑤 can be very small
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Vanishing Gradients▶ If 𝜕𝐻/𝜕𝑤 is always close to zero, 𝑤 is updated
very slowly by gradient descent.▶ In short: early layers are slower to train.▶ One mitigation: use ReLU instead of sigmoid.



Vanishing Gradients

z

Sigmoid

z

ReLU
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Stochastic Gradient Descent



Gradient Descent for Minimizing Risk▶ In ML, we often want to minimize a risk function:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)



Observation▶ The gradient of the risk function is a sum of
gradients: ∇⃗𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ∇⃗ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ One term for each point in training data.



Problem▶ In machine learning, the number of training
points 𝑛 can be very large.▶ Computing the gradient can be expensive when𝑛 is large.▶ Therefore, each step of gradient descent can be
expensive.



Idea▶ The (full) gradient of the risk uses all of the
training data:∇𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ∇ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ It is an average of 𝑛 gradients.▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.



Stochastic Gradient▶ Choose a random subset (mini-batch) 𝐵 of the
training data.▶ Compute a stochastic gradient:∇𝑅(�⃗�) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)



Stochastic Gradient

∇𝑅(�⃗�) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.▶ Bad: it is a (random) approximation of the full
gradient, noisy.



Stochastic Gradient Descent (SGD)
for ERM▶ Pick arbitrary starting point ⃗𝑥(0), learning rate

parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.▶ Until convergence, repeat:▶ Randomly sample a batch 𝐵 of 𝑚 training data points
(on each iteration).▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):�⃗� = ∑𝑖∈𝐵 ∇⃗ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂�⃗�



Idea▶ In practice, a stochastic gradient often works
well enough.▶ It is better to take many noisy steps quickly than
few exact steps slowly.



Batch Size▶ Batch size 𝑚 is a parameter of the algorithm.▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.▶ Extreme case when 𝑚 = 1 will still work.
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Usefulness of SGD▶ SGD allows learning on massive data sets.▶ Useful even when exact solutions available.▶ E.g., least squares regression / classification.
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Output Units



Output Units▶ As with units in hidden layers, can choose
different activation functions for the outputs
layey.▶ What activation function?▶ How many units?▶ Good choice depends on task:▶ Regression, binary classification, multiclass, etc.▶ Which loss?



Setting 1: Regression

▶ Output can be any real
number.▶ Single output neuron.▶ It makes sense to use a
linear activation.
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Setting 1: Regression▶ Prediction should not be too high/low.▶ It makes sense to use the mean squared error.



Setting 1: Regression▶ Suppose we use linear
activation for output
neuron + mean squared
error.▶ This is very similar to least
squares regression...▶ But! Features in earlier
layers are learned,
non-linear.



Special Case: Least Squares𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0 The case of:▶ a one layer neural network▶ with all linear activations▶ trained with square loss
is also called least
squares regression.



Setting 2: Binary Classification

▶ Output can be in [0, 1].▶ Single output neuron.▶ We could use a linear
activation, threshold.▶ But there is a better way.
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Sigmoids for Classification▶ Natural choice for activation in output layer for
binary classification: the sigmoid.

z



Binary Classification Loss▶ We could use square loss for binary
classification. There are several reasons not to:▶ 1) Square loss penalizes predictions which are
“too correct”.▶ 2) It doesn’t work well with the sigmoid due to
saturation.



The Cross-Entropy▶ Instead, we often train deep classifiers using the
cross-entropy as loss.▶ Let 𝑦(𝑖) ∈ {0, 1} be true label of 𝑖th example.▶ The average cross-entropy loss:−1𝑛 𝑛∑𝑖=1 {log 𝑓( ⃗𝑥(𝑖)), if 𝑦(𝑖) = 1log [1 − 𝑓( ⃗𝑥(𝑖))] , if 𝑦(𝑖) = 0



The Cross-Entropy and the Sigmoid▶ Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.



Summary: Binary Classification▶ Use sigmoidal activation the output layer +
cross-entropy loss.▶ This will promote a strong gradient.▶ Use whatever activation for the hidden layers
(e.g., ReLU).



Special Case: Logisitic Regression𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0 The case of:▶ a one layer neural network▶ with sigmoid activation▶ trained with cross-entropy
loss

is also called logistic
regression.
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Convolutions



+ +



From Simple to Complex▶ Complex shapes are made of simple patterns▶ The human visual system uses this fact▶ Line detector→ shape detector→ …→ face
detector▶ Can we replicate this with a deep NN?



Edge Detector

▶ How do we find vertical
edges in an image?▶ One solution: convolution
with an edge filter.



Vertical Edge Filter



Idea

▶ Take a patch of the image,
same size as filter.▶ Perform “dot product”
between patch and filter.▶ If large, this is a (vertical)
edge.

image patch:

filter:



Idea▶ Move the filter over the entire image, repeat
procedure.
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Idea▶ Move the filter over the entire image, repeat
procedure.
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Idea▶ Move the filter over the entire image, repeat
procedure.
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Idea▶ Move the filter over the entire image, repeat
procedure.
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Idea▶ Move the filter over the entire image, repeat
procedure.
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Convolution▶ The result is the (2d) convolution of the filter
with the image.▶ Output is also 2-dimensional array.▶ Called a response map.



Example: Vertical Filter



Example: Horizontal Filter



More About Filters▶ Typically 3×3 or 5×5.▶ Variations: different stride, image padding.



3-d Filters▶ Black and white images are 2-d arrays.▶ But color images are 3-d arrays:▶ a.k.a., tensors▶ Three color channels: red, green, blue.▶ height × width × 3▶ How does convolution work here?



Color Image



3-d Filter▶ The filter must also have three channels:▶ 3 × 3 × 3, 5 × 5 × 3, etc.



3-d Filter



3-d Filter



3-d Filter



Convolution with 3-d Filter▶ Filter must have same number of channels as
image.▶ 3 channels if image RGB.▶ Result is still a 2-d array.



General Case

▶ Input “image” has 𝑘
channels.▶ Filter must have 𝑘
channels as well.▶ e.g., 3 × 3 × 𝑘▶ Output is still 2 − 𝑑


