DST $140 B$ Representation Learning Lecture 22 | Part 1
Gradient Descent for NN Training

Empirical Risk Minimization

0 . Collect a training set, $\left\{\left(\vec{x}^{(i)}, y_{i}\right)\right\}$

1. Pick the form of the prediction function, H.

- E.g., a neural network, H.

2. Pick a loss function.
3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk

- To minimize risk, we often use vector calculus.
\Rightarrow Either set $\nabla_{\vec{w}} R(\vec{w})=0$ and solve...
\Rightarrow Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
\Rightarrow Recall, $\nabla_{\vec{w}} R(\vec{w})=\left(\partial R / \partial w_{0}, \partial R / \partial w_{1}, \ldots, \partial R / \partial w_{d}\right)^{T}$

In General

- Let ℓ be the loss function, let $H(\vec{x} ; \vec{w})$ be the prediction function.
- The empirical risk:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- Using the chain rule:

$$
\nabla_{\vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial l}{\partial H} \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)
$$

Training Neural Networks

- For neural networks with nonlinear activations, the risk $R(\vec{w})$ is typically complicated.
- The mininimizer cannot be found directly.
- Instead, we use iterative methods, such as gradient descent.

Iterative Optimization

- To minimize a function $f(\vec{x})$, we may try to compute $\vec{\nabla} f(\vec{x})$; set to 0 ; solve.
- Often, there is no closed-form solution.
- How do we minimize f ?

Example

Consider $f(x, y)=e^{x^{2}+y^{2}}+(x-2)^{2}+(y-3)^{2}$.

Example

Try solving $\vec{\nabla} f(x, y)=0$.
The gradient is:

$$
\vec{\nabla} f(x, y)=\binom{2 x e^{x^{2}+y^{2}}+2(x-2)}{2 y e^{x^{2}+y^{2}}+2(y-3)}
$$

- Can we solve the system?

$$
\begin{aligned}
& 2 x e^{x^{2}+y^{2}}+2(x-2)=0 \\
& 2 y e^{x^{2}+y^{2}}+2(y-3)=0
\end{aligned}
$$

Example

- Try solving $\vec{\nabla} f(x, y)=0$.
- The gradient is:

$$
\vec{\nabla} f(x, y)=\binom{2 x e^{x^{2}+y^{2}}+2(x-2)}{2 y e^{x^{2}+y^{2}}+2(y-3)}
$$

- Can we solve the system? Not in closed form.

$$
\begin{aligned}
& 2 x e^{x^{2}+y^{2}}+2(x-2)=0 \\
& 2 y e^{x^{2}+y^{2}}+2(y-3)=0
\end{aligned}
$$

Idea

- Apply an iterative approach.
- Start at an arbitrary location.
- "Walk downhill", towards minimum.

Which way is down?

- Consider a differentiable function $f(x, y)$.
- We are standing at $P=\left(x_{0}, y_{0}\right)$.
- In a small region around P, f looks like a plane.

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)
$$

The Gradient

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be differentiable. The gradient of f at \vec{x} is defined:

$$
\vec{\nabla} f(\vec{x})=\left(\frac{\partial f}{\partial x_{1}}(\vec{x}), \frac{\partial f}{\partial x_{2}}(\vec{x}), \ldots, \frac{\partial f}{\partial x_{d}}(\vec{x})\right)^{\top}
$$

- Note: $\vec{\nabla} f(\vec{x})$ is a function mapping $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

Which way is down?

- $\vec{\nabla} f\left(x_{0}, y_{0}\right)$ points in direction of steepest ascent at $\left(x_{0}, y_{0}\right)$.
- $-\vec{\nabla} f\left(x_{0}, y_{0}\right)$ points in direction of steepest descent at (x_{0}, y_{0}).

Gradient Properties

- The gradient is used in the linear approximation of f :

$$
f\left(x_{0}+\delta_{x}, y_{0}+\delta_{y}\right) \approx f\left(x_{0}, y_{0}\right)+\vec{\delta} \cdot \vec{\nabla} f\left(x_{0}, y_{0}\right)
$$

- Important properties:
$>\vec{\nabla} f(\vec{x})$ points in direction of steepest ascent at \vec{x}.
$>-\vec{\nabla} f(\vec{x})$ points in direction of steepest descent at \vec{x}.
- In directions orthogonal to $\vec{\nabla} f(\vec{x}), f$ does not change!
- \|\| $f(\vec{x}) \|$ measures steepness of ascent

Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$.
- Until convergence, repeat:
- Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
\Rightarrow Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
- When do we stop?
- When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
\Rightarrow I.e., when $\left\|\vec{x}^{(i)}-\vec{x}^{(i+1)}\right\|$ is small.

def gradient_descent(

gradient, x, learning_rate=.01, threshold=.1e-4
):
while True:
x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
break
x = x_new
return x

Backprop Revisited

- The weights of a neural network can be trained using gradient descent.
- This requires the gradient to be calculated repeatedly; this is where backprop enters.
- Sometimes people use "backprop" to mean "backprop + SGD", but this is not strictly correct.

Backprop Revisited

Consider training a NN using the square loss:

$$
\begin{aligned}
\nabla_{\vec{w}} R(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial l}{\partial H} \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right) \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)
\end{aligned}
$$

Backprop Revisited

- Interpretation:

$$
\nabla_{\vec{w}} R(\vec{w})=\frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)}_{\text {Error }} \underbrace{\nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)}_{\text {Blame }}
$$

- When used in SGD, backprop "propagates error backward" in order to update weights.

Difficulty of Training NNs

- Gradient descent is guaranteed to find optimum when objective function is convex. ${ }^{1}$

Difficulty of Training NNs

- When activations are non-linear, neural network risk is highly non-convex:

Non-Convexity

- When R is non-convex, GD can get "stuck" in local minima.
- Solution depends on initialization.
- More sophisticated optimizers, using momentum, adaptation, better initialization, etc.
- Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

- Deep networks can suffer from the problem of vanishing gradients: if w is a weight at the "front" of the network, $\partial H / \partial w$ can be very small

Vanishing Gradients

DST $140 B$ Representation Learning Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

- In ML, we often want to minimize a risk function:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Observation

- The gradient of the risk function is a sum of gradients:

$$
\vec{\nabla} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \vec{\nabla} R\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- One term for each point in training data.

Problem

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

- The (full) gradient of the risk uses all of the training data:

$$
\nabla R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- It is an average of n gradients.
- Idea: instead of using all n points, randomly choose < n.

Stochastic Gradient

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$
\nabla R(\vec{w}) \underset{|B|}{\approx \sum_{i \in B}} \overrightarrow{\nabla P}\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Stochastic Gradient

$$
\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

\downarrow Good: if $|B| \ll n$, this is much faster to compute.

- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$, batch size $\bar{m}<n$.
- Until convergence, repeat:
- Randomly sample a batch B of m training data points (on each iteration).
$>$ Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$
\vec{g}=\sum_{i \in B} \vec{\nabla} \ell\left(H\left(\vec{x}^{(i)} ; \vec{W}\right), y_{i}\right)
$$

\Rightarrow Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{g}$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch sizem is a parameter of the algorithm.
- The larger m, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when $m=1$ will still work.

Usefulness of SGD

- SGD allows learning on massive data sets. $X=(n \times x d)$
- Useful even when exact solutions available.
- E.g., least squares regression / classification.

DST $140 B$ Representation Learning Lecture $22 \mid$ Part 3
Output Units

Output Units

- As with units in hidden layers, can choose different activation functions for the outputs layey.

What activation function?

- How many units?

$$
y \in \mathbb{R}
$$

- Good choice:depends on task:
- Regression, binary classiffation, multiclass, etc.
- Which loss?

Setting 1: Regression

- Output can be any real number.
- Single output neuron.
- It makes sense to use a linear activation.

Setting 1: Regression

- Prediction should not be too high/Low.
- It makes sense to use the mean squared error.

Setting 1: Regression

- Suppose we use linear activation for output neuron + mean squared error.
- This is very similar to least squares regression...
- But! Features in earlier layers are learned, non-linear.

Special Case: Least Squares

The case of:

- a one layer neural network
- with all linear activations
- trained with square loss
is also called least
squares regression.

Setting 2: Binary Classification

- Output can be in [0, 1].
- Single output neuron.
- We could use a linear $\in \mathbb{R}$ activation, threshold.
- But there is a better way.

Sigmoids for Classification

- Natural choice for activation in output layer for binary classification: the sigmoid.

Binary Classification Loss

- We could use square loss for binary classification. There are several reasons not to:
- 1) Square loss penalizes predictions which are "too correct".
- 2) It doesn't work well with the sigmoid due to saturation.

The Cross-Entropy and the Sigmoid

- Cross-entropy "undoes" the exponential in the sigmoid, resulting in less saturation.

Summary: Binary Classification

- Use sigmoidal activation the output layer + cross-entropy loss.
- This will promote a strong gradient.
- Use whatever activation for the hidden layers (e.g., ReLU).

Special Case: Logistic Regression

The case of:

- a one layer neural network
\Rightarrow with sigmoid activation
\Rightarrow trained with cross-entropy loss
is also called logistic
regression.

DST $140 B$
Representation Learning Convolutions

$$
4
$$

From Simple to Complex

- Complex shapes are made of simple patterns
- The human visual system uses this fact
- Line detector \rightarrow shape detector \rightarrow... \rightarrow face detector
- Can we replicate this with a deep NN?

Edge Detector

- How do we find vertical edges in an image?
- One solution: convolution with an edge filter.

Vertical Edge Filter

Idea

- Take a patch of the image, same size as filter.
- Perform "dot product"
image patch: between patch and filter.

filter:
- If large, this is a (vertical) edge.

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Idea

- Move the filter over the entire image, repeat procedure.

0	0	0	0	0	0		
0	0	.9	0	0	.7		
0	0	.9	0	0	.8		
0	0	.8	0	0	.9		
0	0	.7	0	0	0		

Convolution

- The result is the (2d) convolution of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

Example: Vertical Filter

Example: Horizontal Filter

More About Filters

- Typically 3×3 or 5×5.
- Variations: different stride, image padding.

3-d Filters

- Black and white images are 2-d arrays.
- But color images are 3-d arrays:
- a.k.a., tensors
$>$ Three color channels: red, green, blue.
\Rightarrow height \times width $\times 3$
- How does convolution work here?

Color Image

3-d Filter

- The filter must also have three channels:
$3 \times 3 \times 3,5 \times 5 \times 3$, etc.

3-d Filter

3-d Filter

3-d Filter

Convolution with 3-d Filter

- Filter must have same number of channels as image.
> 3 channels if image RGB.
- Result is still a 2-d array.

General Case

- Input "image" has k channels.
- Filter must have k channels as well.
- e.g., $3 \times 3 \times k$
- Output is still $2-d$

