
Lecture 22 | Part 1

Gradient Descent for NN Training

Empirical Risk Minimization

0. Collect a training set, {(⃗𝑥(𝑖), 𝑦𝑖)}
1. Pick the form of the prediction function, 𝐻.▶ E.g., a neural network, 𝐻.
2. Pick a loss function.

3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk▶ To minimize risk, we often use vector calculus.▶ Either set ∇�⃗�𝑅(�⃗�) = 0 and solve...▶ Or use gradient descent: walk in opposite direction of∇�⃗�𝑅(�⃗�).▶ Recall, ∇�⃗�𝑅(�⃗�) = (𝜕𝑅/𝜕𝑤0, 𝜕𝑅/𝜕𝑤1, … , 𝜕𝑅/𝜕𝑤𝑑)𝑇

In General▶ Let ℓ be the loss function, let 𝐻(⃗𝑥; �⃗�) be the
prediction function.▶ The empirical risk:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Using the chain rule:∇�⃗�𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)

Training Neural Networks▶ For neural networks with nonlinear activations,
the risk 𝑅(�⃗�) is typically complicated.▶ The mininimizer cannot be found directly.▶ Instead, we use iterative methods, such as
gradient descent.

Iterative Optimization▶ To minimize a function 𝑓(⃗𝑥), we may try to
compute ∇⃗𝑓(⃗𝑥); set to 0; solve.▶ Often, there is no closed-form solution.▶ How do we minimize 𝑓?

Example▶ Consider 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2.

Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system?2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system? Not in closed form.2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Idea

▶ Apply an iterative approach.▶ Start at an arbitrary location.▶ “Walk downhill”, towards
minimum.

Which way is down?▶ Consider a differentiable
function 𝑓(𝑥, 𝑦).▶ We are standing at 𝑃 = (𝑥0, 𝑦0).▶ In a small region around 𝑃, 𝑓
looks like a plane.▶ Slope of plane in 𝑥, 𝑦
directions:𝜕𝑓𝜕𝑥(𝑥0, 𝑦0) 𝜕𝑓𝜕𝑦(𝑥0, 𝑦0)

The Gradient▶ Let 𝑓 ∶ ℝ𝑑 → ℝ be differentiable. The gradient of𝑓 at ⃗𝑥 is defined:∇⃗𝑓(⃗𝑥) = (𝜕𝑓𝜕𝑥1 (⃗𝑥), 𝜕𝑓𝜕𝑥2 (⃗𝑥), … , 𝜕𝑓𝜕𝑥𝑑 (⃗𝑥))𝑇▶ Note: ∇⃗𝑓(⃗𝑥) is a function mapping ℝ𝑑 → ℝ𝑑.

Which way is down?

▶ ∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest ascent at (𝑥0, 𝑦0).▶ −∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest descent at (𝑥0, 𝑦0).

Gradient Properties▶ The gradient is used in the linear approximation
of 𝑓:𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + �⃗� ⋅ ∇⃗𝑓(𝑥0, 𝑦0)▶ Important properties:▶ ∇⃗𝑓(⃗𝑥) points in direction of steepest ascent at ⃗𝑥.▶ −∇⃗𝑓(⃗𝑥) points in direction of steepest descent at ⃗𝑥.▶ In directions orthogonal to ∇⃗𝑓(⃗𝑥), 𝑓 does not change!▶ ‖∇⃗𝑓(⃗𝑥)‖ measures steepness of ascent

Gradient Descent▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.▶ Until convergence, repeat:▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓(⃗𝑥(𝑖)).▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).▶ When do we stop?▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x

Backprop Revisited▶ The weights of a neural network can be trained
using gradient descent.▶ This requires the gradient to be calculated
repeatedly; this is where backprop enters.▶ Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.

Backprop Revisited▶ Consider training a NN using the square loss:∇�⃗�𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)= 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖) ∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)

Backprop Revisited▶ Interpretation:∇�⃗�𝑅(�⃗�) = 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)⏟
Error

∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)⏟
Blame▶ When used in SGD, backprop “propagates error

backward” in order to update weights.

Difficulty of Training NNs▶ Gradient descent is guaranteed to find optimum
when objective function is convex.1

1Assuming it is properly initialized

Difficulty of Training NNs▶ When activations are non-linear, neural network
risk is highly non-convex:

Non-Convexity▶ When 𝑅 is non-convex, GD can get “stuck” in local
minima.▶ Solution depends on initialization.▶ More sophisticated optimizers, using
momentum, adaptation, better initialization, etc.▶ Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs▶ Deep networks can suffer from the problem of
vanishing gradients: if 𝑤 is a weight at the
“front” of the network, 𝜕𝐻/𝜕𝑤 can be very small

𝑥1
𝑥2
𝑥3

∑
∑
∑
∑

∑
∑
∑

∑

Vanishing Gradients▶ If 𝜕𝐻/𝜕𝑤 is always close to zero, 𝑤 is updated
very slowly by gradient descent.▶ In short: early layers are slower to train.▶ One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients

z

Sigmoid

z

ReLU

Lecture 22 | Part 2

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk▶ In ML, we often want to minimize a risk function:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

Observation▶ The gradient of the risk function is a sum of
gradients: ∇⃗𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ One term for each point in training data.

Problem▶ In machine learning, the number of training
points 𝑛 can be very large.▶ Computing the gradient can be expensive when𝑛 is large.▶ Therefore, each step of gradient descent can be
expensive.

Idea▶ The (full) gradient of the risk uses all of the
training data:∇𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ∇ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ It is an average of 𝑛 gradients.▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.

Stochastic Gradient▶ Choose a random subset (mini-batch) 𝐵 of the
training data.▶ Compute a stochastic gradient:∇𝑅(�⃗�) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

Stochastic Gradient

∇𝑅(�⃗�) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.▶ Bad: it is a (random) approximation of the full
gradient, noisy.

Stochastic Gradient Descent (SGD)
for ERM▶ Pick arbitrary starting point ⃗𝑥(0), learning rate

parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.▶ Until convergence, repeat:▶ Randomly sample a batch 𝐵 of 𝑚 training data points
(on each iteration).▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):�⃗� = ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂�⃗�

Idea▶ In practice, a stochastic gradient often works
well enough.▶ It is better to take many noisy steps quickly than
few exact steps slowly.

Batch Size▶ Batch size 𝑚 is a parameter of the algorithm.▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.▶ Extreme case when 𝑚 = 1 will still work.

&
v

V
L

L

2 &
↓

2

2 C L

v L

v<-L

Usefulness of SGD▶ SGD allows learning on massive data sets.▶ Useful even when exact solutions available.▶ E.g., least squares regression / classification.

Lecture 22 | Part 3

Output Units

Output Units▶ As with units in hidden layers, can choose
different activation functions for the outputs
layey.▶ What activation function?▶ How many units?▶ Good choice depends on task:▶ Regression, binary classification, multiclass, etc.▶ Which loss?

Setting 1: Regression

▶ Output can be any real
number.▶ Single output neuron.▶ It makes sense to use a
linear activation.

1

2

3

-1

2

1

Setting 1: Regression▶ Prediction should not be too high/low.▶ It makes sense to use the mean squared error.

Setting 1: Regression▶ Suppose we use linear
activation for output
neuron + mean squared
error.▶ This is very similar to least
squares regression...▶ But! Features in earlier
layers are learned,
non-linear.

Special Case: Least Squares𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0 The case of:▶ a one layer neural network▶ with all linear activations▶ trained with square loss
is also called least
squares regression.

Setting 2: Binary Classification

▶ Output can be in [0, 1].▶ Single output neuron.▶ We could use a linear
activation, threshold.▶ But there is a better way.

1

2

3

-1

2

1

Sigmoids for Classification▶ Natural choice for activation in output layer for
binary classification: the sigmoid.

z

Binary Classification Loss▶ We could use square loss for binary
classification. There are several reasons not to:▶ 1) Square loss penalizes predictions which are
“too correct”.▶ 2) It doesn’t work well with the sigmoid due to
saturation.

The Cross-Entropy▶ Instead, we often train deep classifiers using the
cross-entropy as loss.▶ Let 𝑦(𝑖) ∈ {0, 1} be true label of 𝑖th example.▶ The average cross-entropy loss:−1𝑛 𝑛∑𝑖=1 {log 𝑓(⃗𝑥(𝑖)), if 𝑦(𝑖) = 1log [1 − 𝑓(⃗𝑥(𝑖))] , if 𝑦(𝑖) = 0

The Cross-Entropy and the Sigmoid▶ Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.

Summary: Binary Classification▶ Use sigmoidal activation the output layer +
cross-entropy loss.▶ This will promote a strong gradient.▶ Use whatever activation for the hidden layers
(e.g., ReLU).

Special Case: Logisitic Regression𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0 The case of:▶ a one layer neural network▶ with sigmoid activation▶ trained with cross-entropy
loss

is also called logistic
regression.

Lecture 22 | Part 4

Convolutions

+ +

From Simple to Complex▶ Complex shapes are made of simple patterns▶ The human visual system uses this fact▶ Line detector→ shape detector→ …→ face
detector▶ Can we replicate this with a deep NN?

Edge Detector

▶ How do we find vertical
edges in an image?▶ One solution: convolution
with an edge filter.

Vertical Edge Filter

Idea

▶ Take a patch of the image,
same size as filter.▶ Perform “dot product”
between patch and filter.▶ If large, this is a (vertical)
edge.

image patch:

filter:

Idea▶ Move the filter over the entire image, repeat
procedure.

.8

.9

.9

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

.8

.7

.7

.9 =∗

Idea▶ Move the filter over the entire image, repeat
procedure.

.8

.9

.9

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

.8

.7

.7

.9 =∗

Idea▶ Move the filter over the entire image, repeat
procedure.

.8

.9

.9

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

.8

.7

.7

.9 =∗

Idea▶ Move the filter over the entire image, repeat
procedure.

.8

.9

.9

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

.8

.7

.7

.9 =∗

Idea▶ Move the filter over the entire image, repeat
procedure.

.8

.9

.9

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

.8

.7

.7

.9 =∗

Convolution▶ The result is the (2d) convolution of the filter
with the image.▶ Output is also 2-dimensional array.▶ Called a response map.

Example: Vertical Filter

Example: Horizontal Filter

More About Filters▶ Typically 3×3 or 5×5.▶ Variations: different stride, image padding.

3-d Filters▶ Black and white images are 2-d arrays.▶ But color images are 3-d arrays:▶ a.k.a., tensors▶ Three color channels: red, green, blue.▶ height × width × 3▶ How does convolution work here?

Color Image

3-d Filter▶ The filter must also have three channels:▶ 3 × 3 × 3, 5 × 5 × 3, etc.

3-d Filter

3-d Filter

3-d Filter

Convolution with 3-d Filter▶ Filter must have same number of channels as
image.▶ 3 channels if image RGB.▶ Result is still a 2-d array.

General Case

▶ Input “image” has 𝑘
channels.▶ Filter must have 𝑘
channels as well.▶ e.g., 3 × 3 × 𝑘▶ Output is still 2 − 𝑑

