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Gradient Descent for NN Training



Empirical Risk Minimization

0. Collect a training set, {( ⃗𝑥(𝑖), 𝑦𝑖)}

1. Pick the form of the prediction function, 𝐻.
▶ E.g., a neural network, 𝐻.

2. Pick a loss function.

3. Minimize the empirical risk w.r.t. that loss.



Minimizing Risk

▶ To minimize risk, we often use vector calculus.
▶ Either set ∇𝑤⃗𝑅(𝑤⃗) = 0 and solve...
▶ Or use gradient descent: walk in opposite direction of
∇𝑤⃗𝑅(𝑤⃗).

▶ Recall, ∇𝑤⃗𝑅(𝑤⃗) = (𝜕𝑅/𝜕𝑤0, 𝜕𝑅/𝜕𝑤1, … , 𝜕𝑅/𝜕𝑤𝑑)𝑇



In General
▶ Let ℓ be the loss function, let 𝐻( ⃗𝑥; 𝑤⃗) be the
prediction function.

▶ The empirical risk:

𝑅(𝑤⃗) = 1𝑛

𝑛

∑
𝑖=1
ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ Using the chain rule:

∇𝑤⃗𝑅(𝑤⃗) =
1
𝑛

𝑛

∑
𝑖=1

𝜕ℓ
𝜕𝐻∇𝑤⃗𝐻( ⃗𝑥

(𝑖); 𝑤⃗)



Training Neural Networks

▶ For neural networks with nonlinear activations,
the risk 𝑅(𝑤⃗) is typically complicated.

▶ The mininimizer cannot be found directly.

▶ Instead, we use iterative methods, such as
gradient descent.



Iterative Optimization

▶ To minimize a function 𝑓( ⃗𝑥), we may try to
compute ∇⃗𝑓( ⃗𝑥); set to 0; solve.

▶ Often, there is no closed-form solution.

▶ How do we minimize 𝑓?



Example
▶ Consider 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2.

x

0.20.0 0.2 0.4 0.6 0.8 1.0

y

0.25
0.00

0.25
0.50

0.75
1.00

1.25

10
11
12
13
14
15
16
17



Example
▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.

▶ The gradient is:

∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒
𝑥2+𝑦2 + 2(𝑥 − 2)

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3)
)

▶ Can we solve the system?

2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 0
2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0



Example
▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.

▶ The gradient is:

∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒
𝑥2+𝑦2 + 2(𝑥 − 2)

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3)
)

▶ Can we solve the system? Not in closed form.

2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 0
2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0



Idea

▶ Apply an iterative approach.

▶ Start at an arbitrary location.

▶ “Walk downhill”, towards
minimum.
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Which way is down?

▶ Consider a differentiable
function 𝑓(𝑥, 𝑦).

▶ We are standing at 𝑃 = (𝑥0, 𝑦0).

▶ In a small region around 𝑃, 𝑓
looks like a plane.

▶ Slope of plane in 𝑥, 𝑦
directions:

𝜕𝑓
𝜕𝑥(𝑥0, 𝑦0)

𝜕𝑓
𝜕𝑦(𝑥0, 𝑦0)



The Gradient

▶ Let 𝑓 ∶ ℝ𝑑 → ℝ be differentiable. The gradient of
𝑓 at ⃗𝑥 is defined:

∇⃗𝑓( ⃗𝑥) = ( 𝜕𝑓𝜕𝑥1
( ⃗𝑥), 𝜕𝑓𝜕𝑥2

( ⃗𝑥), … , 𝜕𝑓𝜕𝑥𝑑
( ⃗𝑥))

𝑇

▶ Note: ∇⃗𝑓( ⃗𝑥) is a function mapping ℝ𝑑 → ℝ𝑑.



Which way is down?

▶ ∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest ascent at (𝑥0, 𝑦0).

▶ −∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest descent at (𝑥0, 𝑦0).



Gradient Properties

▶ The gradient is used in the linear approximation
of 𝑓:

𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 𝛿⃗ ⋅ ∇⃗𝑓(𝑥0, 𝑦0)

▶ Important properties:
▶ ∇⃗𝑓( ⃗𝑥) points in direction of steepest ascent at ⃗𝑥.
▶ −∇⃗𝑓( ⃗𝑥) points in direction of steepest descent at ⃗𝑥.
▶ In directions orthogonal to ∇⃗𝑓( ⃗𝑥), 𝑓 does not change!
▶ ‖∇⃗𝑓( ⃗𝑥)‖ measures steepness of ascent



Gradient Descent

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.

▶ Until convergence, repeat:
▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓( ⃗𝑥(𝑖)).
▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓( ⃗𝑥(𝑖)).

▶ When do we stop?
▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.
▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.



def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x
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Backprop Revisited

▶ The weights of a neural network can be trained
using gradient descent.

▶ This requires the gradient to be calculated
repeatedly; this is where backprop enters.

▶ Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.



Backprop Revisited

▶ Consider training a NN using the square loss:

∇𝑤⃗𝑅(𝑤⃗) =
1
𝑛

𝑛

∑
𝑖=1

𝜕ℓ
𝜕𝐻∇𝑤⃗𝐻( ⃗𝑥

(𝑖); 𝑤⃗)

= 2𝑛

𝑛

∑
𝑖=1
(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖) ∇𝑤⃗𝐻( ⃗𝑥(𝑖); 𝑤⃗)



Backprop Revisited

▶ Interpretation:

∇𝑤⃗𝑅(𝑤⃗) =
2
𝑛

𝑛

∑
𝑖=1
(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)⏟

Error

∇𝑤⃗𝐻( ⃗𝑥(𝑖); 𝑤⃗)⏟
Blame

▶ When used in SGD, backprop “propagates error
backward” in order to update weights.



Difficulty of Training NNs
▶ Gradient descent is guaranteed to find optimum
when objective function is convex.1

1Assuming it is properly initialized



Difficulty of Training NNs

▶ When activations are non-linear, neural network
risk is highly non-convex:



Non-Convexity

▶ When 𝑅 is non-convex, GD can get “stuck” in local
minima.
▶ Solution depends on initialization.

▶ More sophisticated optimizers, using
momentum, adaptation, better initialization, etc.
▶ Adagrad, RMSprop, Adam, etc.



Difficulty of Training (Deep) NNs
▶ Deep networks can suffer from the problem of
vanishing gradients: if 𝑤 is a weight at the
“front” of the network, 𝜕𝐻/𝜕𝑤 can be very small

𝑥1

𝑥2

𝑥3
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∑

∑

∑

∑

∑

∑

∑



Vanishing Gradients

▶ If 𝜕𝐻/𝜕𝑤 is always close to zero, 𝑤 is updated
very slowly by gradient descent.

▶ In short: early layers are slower to train.

▶ One mitigation: use ReLU instead of sigmoid.



Vanishing Gradients

z

Sigmoid

z

ReLU
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Stochastic Gradient Descent



Gradient Descent for Minimizing Risk

▶ In ML, we often want to minimize a risk function:

𝑅(𝑤⃗) = 1𝑛

𝑛

∑
𝑖=1
ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)



Observation

▶ The gradient of the risk function is a sum of
gradients:

∇⃗𝑅(𝑤⃗) = 1𝑛

𝑛

∑
𝑖=1
∇⃗ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ One term for each point in training data.



Problem

▶ In machine learning, the number of training
points 𝑛 can be very large.

▶ Computing the gradient can be expensive when
𝑛 is large.

▶ Therefore, each step of gradient descent can be
expensive.



Idea

▶ The (full) gradient of the risk uses all of the
training data:

∇𝑅(𝑤⃗) = 1𝑛

𝑛

∑
𝑖=1
∇ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ It is an average of 𝑛 gradients.

▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.



Stochastic Gradient

▶ Choose a random subset (mini-batch) 𝐵 of the
training data.

▶ Compute a stochastic gradient:

∇𝑅(𝑤⃗) ≈ ∑
𝑖∈𝐵

∇⃗ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)



Stochastic Gradient

∇𝑅(𝑤⃗) ≈ ∑
𝑖∈𝐵

∇⃗ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.

▶ Bad: it is a (random) approximation of the full
gradient, noisy.



Stochastic Gradient Descent (SGD)
for ERM

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.

▶ Until convergence, repeat:
▶ Randomly sample a batch 𝐵 of 𝑚 training data points
(on each iteration).

▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):

𝑔⃗ = ∑
𝑖∈𝐵
∇⃗ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂𝑔⃗



Idea

▶ In practice, a stochastic gradient often works
well enough.

▶ It is better to take many noisy steps quickly than
few exact steps slowly.



Batch Size

▶ Batch size 𝑚 is a parameter of the algorithm.

▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.

▶ Extreme case when 𝑚 = 1 will still work.
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Usefulness of SGD

▶ SGD allows learning on massive data sets.

▶ Useful even when exact solutions available.
▶ E.g., least squares regression / classification.



Training NNs in Practice

▶ There are several Python packages for training
NNs:
▶ PyTorch
▶ Tensorflow / Keras

▶ This week’s discussion was a Tensorflow tutorial.
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Output Units



Output Units

▶ As with units in hidden layers, can choose
different activation functions for the outputs
layey.
▶ What activation function?
▶ How many units?

▶ Good choice depends on task:
▶ Regression, binary classification, multiclass, etc.

▶ Which loss?



Setting 1: Regression

▶ Output can be any real
number.

▶ Single output neuron.

▶ It makes sense to use a
linear activation.
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Setting 1: Regression

▶ Prediction should not be too high/low.

▶ It makes sense to use the mean squared error.



Setting 1: Regression

▶ Suppose we use linear
activation for output
neuron + mean squared
error.

▶ This is very similar to least
squares regression...

▶ But! Features in earlier
layers are learned,
non-linear.



Special Case: Least Squares

𝑥1

𝑥2

𝑥𝑑

⋮
∑

1𝑤1

𝑤2

𝑤𝑑

𝑤0
The case of:
▶ a one layer neural network
▶ with all linear activations
▶ trained with square loss

is also called least
squares regression.



Setting 2: Binary Classification

▶ Output can be in [0, 1].

▶ Single output neuron.

▶ We could use a linear
activation, threshold.

▶ But there is a better way.
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Sigmoids for Classification
▶ Natural choice for activation in output layer for
binary classification: the sigmoid.

z



Binary Classification Loss

▶ We could use square loss for binary
classification. There are several reasons not to:

▶ 1) Square loss penalizes predictions which are
“too correct”.

▶ 2) It doesn’t work well with the sigmoid due to
saturation.



The Cross-Entropy

▶ Instead, we often train deep classifiers using the
cross-entropy as loss.

▶ Let 𝑦(𝑖) ∈ {0, 1} be true label of 𝑖th example.

▶ The average cross-entropy loss:

−1𝑛

𝑛

∑
𝑖=1
{
log 𝑓( ⃗𝑥(𝑖)), if 𝑦(𝑖) = 1
log [1 − 𝑓( ⃗𝑥(𝑖))] , if 𝑦(𝑖) = 0



The Cross-Entropy and the Sigmoid

▶ Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.



Summary: Binary Classification

▶ Use sigmoidal activation the output layer +
cross-entropy loss.

▶ This will promote a strong gradient.

▶ Use whatever activation for the hidden layers
(e.g., ReLU).



Special Case: Logisitic Regression

𝑥1

𝑥2

𝑥𝑑

⋮
∑

1𝑤1

𝑤2

𝑤𝑑

𝑤0

The case of:
▶ a one layer neural network
▶ with sigmoid activation
▶ trained with cross-entropy
loss

is also called logistic
regression.
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Convolutions



+ +



From Simple to Complex

▶ Complex shapes are made of simple patterns

▶ The human visual system uses this fact

▶ Line detector→ shape detector→ …→ face
detector

▶ Can we replicate this with a deep NN?



Edge Detector

▶ How do we find vertical
edges in an image?

▶ One solution: convolution
with an edge filter.



Vertical Edge Filter



Idea

▶ Take a patch of the image,
same size as filter.

▶ Perform “dot product”
between patch and filter.

▶ If large, this is a (vertical)
edge.

image patch:

filter:



Idea

▶ Move the filter over the entire image, repeat
procedure.
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Idea

▶ Move the filter over the entire image, repeat
procedure.
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Idea

▶ Move the filter over the entire image, repeat
procedure.
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Idea

▶ Move the filter over the entire image, repeat
procedure.

.8

.9

.9

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

.8

.7

.7

.9

=∗



Idea

▶ Move the filter over the entire image, repeat
procedure.
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Convolution

▶ The result is the (2d) convolution of the filter
with the image.

▶ Output is also 2-dimensional array.

▶ Called a response map.



Example: Vertical Filter



Example: Horizontal Filter



More About Filters

▶ Typically 3×3 or 5×5.

▶ Variations: different stride, image padding.



3-d Filters

▶ Black and white images are 2-d arrays.

▶ But color images are 3-d arrays:
▶ a.k.a., tensors
▶ Three color channels: red, green, blue.
▶ height × width × 3

▶ How does convolution work here?



Color Image



3-d Filter

▶ The filter must also have three channels:
▶ 3 × 3 × 3, 5 × 5 × 3, etc.



3-d Filter



3-d Filter



3-d Filter



Convolution with 3-d Filter

▶ Filter must have same number of channels as
image.
▶ 3 channels if image RGB.

▶ Result is still a 2-d array.



General Case

▶ Input “image” has 𝑘
channels.

▶ Filter must have 𝑘
channels as well.
▶ e.g., 3 × 3 × 𝑘

▶ Output is still 2 − 𝑑


