

Lecture 22 | Part 1

**Gradient Descent for NN Training** 

#### **Empirical Risk Minimization**

- 0. Collect a training set,  $\{(\vec{x}^{(i)}, y_i)\}$
- Pick the form of the prediction function, H.
   E.g., a neural network, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

## **Minimizing Risk**

- To minimize risk, we often use **vector calculus**.
  - ► Either set  $\nabla_{\vec{w}} R(\vec{w}) = 0$  and solve...
  - Or use gradient descent: walk in opposite direction of  $\nabla_{\vec{w}} R(\vec{w})$ .
- ► Recall,  $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

#### In General

- Let  $\ell$  be the loss function, let  $H(\vec{x}; \vec{w})$  be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

#### **Training Neural Networks**

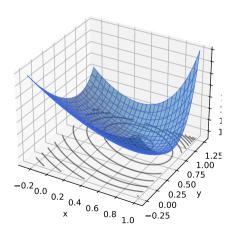
- For neural networks with nonlinear activations, the risk  $R(\vec{w})$  is typically **complicated.**
- ► The minimizer cannot be found directly.
- Instead, we use iterative methods, such as gradient descent.

#### **Iterative Optimization**

- To minimize a function  $f(\vec{x})$ , we may try to compute  $\vec{\nabla} f(\vec{x})$ ; set to 0; solve.
- Often, there is no closed-form solution.
- ► How do we minimize *f*?

## **Example**

Consider  $f(x, y) = e^{x^2+y^2} + (x-2)^2 + (y-3)^2$ .



## **Example**

- ► Try solving  $\vec{\nabla} f(x, y) = 0$ .
- ► The gradient is:

$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system?

$$2xe^{x^2+y^2} + 2(x-2) = 0$$
$$2ye^{x^2+y^2} + 2(y-3) = 0$$

#### **Example**

- ► Try solving  $\vec{\nabla} f(x, y) = 0$ .
- ► The gradient is:

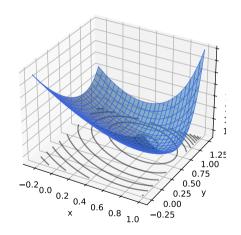
$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system? Not in closed form.

$$2xe^{x^2+y^2} + 2(x-2) = 0$$
$$2ye^{x^2+y^2} + 2(y-3) = 0$$

#### Idea

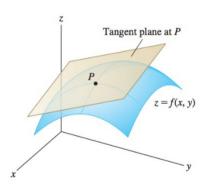
- Apply an iterative approach.
- Start at an arbitrary location.
- "Walk downhill", towards minimum.



## Which way is down?

- Consider a differentiable function f(x, y).
- We are standing at  $P = (x_0, y_0)$ .
- In a small region around *P*, *f* looks like a plane.
- Slope of plane in x, y directions:

$$\frac{\partial f}{\partial x}(x_0, y_0) \quad \frac{\partial f}{\partial y}(x_0, y_0)$$



#### The Gradient

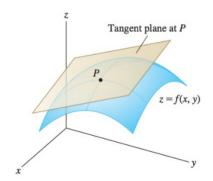
Let  $f : \mathbb{R}^d \to \mathbb{R}$  be differentiable. The gradient of f at  $\vec{x}$  is defined:

$$\vec{\nabla} f(\vec{x}) = \left(\frac{\partial f}{\partial x_1}(\vec{x}), \frac{\partial f}{\partial x_2}(\vec{x}), \dots, \frac{\partial f}{\partial x_d}(\vec{x})\right)^T$$

▶ **Note:**  $\vec{\nabla} f(\vec{x})$  is a **function** mapping  $\mathbb{R}^d \to \mathbb{R}^d$ .

## Which way is down?

- ▶  $\vec{\nabla} f(x_0, y_0)$  points in direction of steepest **ascent** at  $(x_0, y_0)$ .
- ►  $-\vec{\nabla} f(x_0, y_0)$  points in direction of steepest **descent** at  $(x_0, y_0)$ .



## **Gradient Properties**

The gradient is used in the linear approximation of f:

$$f(x_0+\delta_x,y_0+\delta_y)\approx f(x_0,y_0)+\vec{\delta}\cdot\vec{\nabla}f(x_0,y_0)$$

- Important properties:
  - $\vec{\nabla} f(\vec{x})$  points in direction of **steepest ascent** at  $\vec{x}$ .
  - ▶  $-\vec{\nabla} f(\vec{x})$  points in direction of **steepest descent** at  $\vec{x}$ .
  - In directions orthogonal to  $\vec{\nabla} f(\vec{x})$ , f does not change!

#### **Gradient Descent**

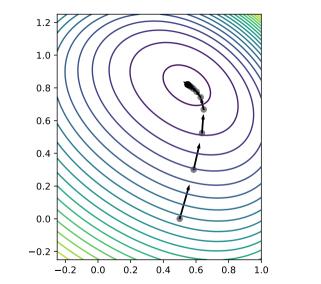
- Pick arbitrary starting point  $\vec{x}^{(0)}$ , learning rate parameter  $\eta > 0$ .
- Until convergence, repeat:
  - ► Compute gradient of f at  $\vec{x}^{(i)}$ ; that is, compute  $\vec{\nabla} f(\vec{x}^{(i)})$ .
  - ► Update  $\vec{x}^{(i+1)} = \vec{x}^{(i)} \eta \vec{\nabla} f(\vec{x}^{(i)})$ .
- When do we stop?
  - ▶ When difference between  $\vec{x}^{(i)}$  and  $\vec{x}^{(i+1)}$  is negligible.
  - ► I.e., when  $\|\vec{x}^{(i)} \vec{x}^{(i+1)}\|$  is small.

```
def gradient_descent(
          gradient, x, learning_rate=.01,
          threshold=.1e-4
):
    while True:
        x_new = x - learning_rate * gradient(x)
        if np.linalg.norm(x - x new) < threshold:</pre>
```

break

x = x new

return x



#### **Backprop Revisited**

- The weights of a neural network can be trained using gradient descent.
- This requires the gradient to be calculated repeatedly; this is where backprop enters.
- Sometimes people use "backprop" to mean "backprop + SGD", but this is not strictly correct.

## **Backprop Revisited**

Consider training a NN using the square loss:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

$$= \frac{2}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i) \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

#### **Backprop Revisited**

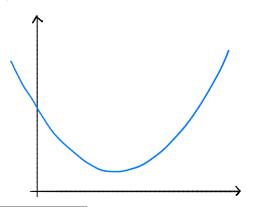
► Interpretation:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{(H(\vec{x}^{(i)}) - y_i)}_{\text{Error}} \underbrace{\nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})}_{\text{Blame}}$$

When used in SGD, backprop "propagates error backward" in order to update weights.

## **Difficulty of Training NNs**

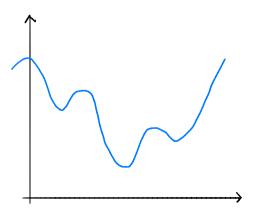
Gradient descent is guaranteed to find optimum when objective function is convex.<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Assuming it is properly initialized

## **Difficulty of Training NNs**

When activations are non-linear, neural network risk is highly non-convex:

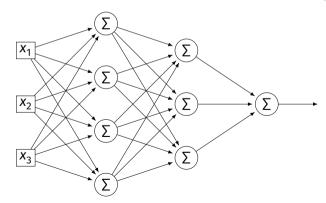


#### **Non-Convexity**

- When R is non-convex, GD can get "stuck" in local minima.
  - Solution depends on initialization.
- More sophisticated optimizers, using momentum, adaptation, better initialization, etc.
  - Adagrad, RMSprop, Adam, etc.

## Difficulty of Training (Deep) NNs

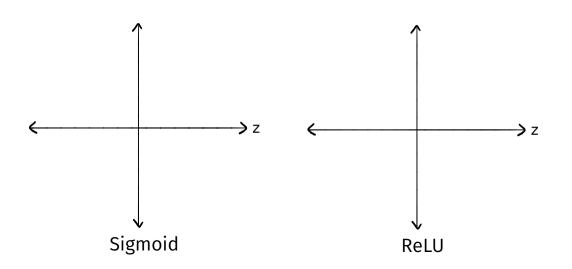
Deep networks can suffer from the problem of vanishing gradients: if w is a weight at the "front" of the network, ∂H/∂w can be very small



#### **Vanishing Gradients**

- If  $\partial H/\partial w$  is always close to zero, w is updated **very slowly** by gradient descent.
- In short: early layers are slower to train.
- One mitigation: use ReLU instead of sigmoid.

## **Vanishing Gradients**



# DSC 1408 Representation Learning

Lecture 22 | Part 2

**Stochastic Gradient Descent** 

## **Gradient Descent for Minimizing Risk**

► In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

#### **Observation**

The gradient of the risk function is a sum of gradients:

$$\vec{\nabla}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \vec{\nabla}\ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

One term for each point in training data.

#### **Problem**

- In machine learning, the number of training points *n* can be **very large**.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

#### Idea

► The (full) gradient of the risk uses all of the training data:

$$\nabla R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- It is an average of n gradients.
- ▶ **Idea:** instead of using all n points, randomly choose  $\ll n$ .

#### **Stochastic Gradient**

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

#### **Stochastic Gradient**

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ **Good:** if  $|B| \ll n$ , this is much faster to compute.
- Bad: it is a (random) approximation of the full gradient, noisy.

## Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point  $\vec{x}^{(0)}$ , learning rate parameter  $\eta > 0$ , batch size  $m \ll n$ .
- Until convergence, repeat:
  - Randomly sample a batch *B* of *m* training data points (on each iteration).
  - ► Compute stochastic gradient of f at  $\vec{x}^{(i)}$ :

$$\vec{g} = \sum_{i=1}^{n} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

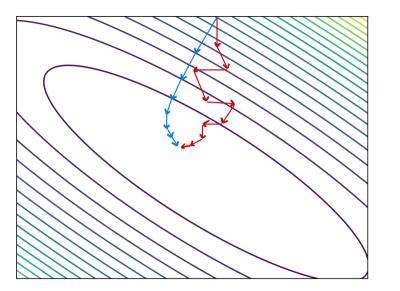
ightharpoonup Update  $\vec{x}^{(i+1)} = \vec{x}^{(i)} - \eta \vec{q}$ 

#### Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

#### **Batch Size**

- Batch size m is a parameter of the algorithm.
- ► The larger *m*, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when m = 1 will still work.



#### **Usefulness of SGD**

- SGD allows learning on massive data sets.
- Useful even when exact solutions available.
  - ► E.g., least squares regression / classification.

# **Training NNs in Practice**

- There are several Python packages for training NNs:
  - PyTorch
  - ► Tensorflow / Keras
- ► This week's discussion was a Tensorflow tutorial.

# DSC 1408 Representation Learning

Lecture 22 | Part 3

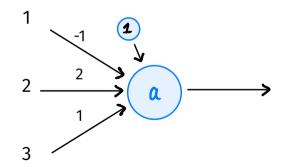
**Output Units** 

# **Output Units**

- As with units in hidden layers, can choose different activation functions for the outputs layey.
  - What activation function?
  - How many units?
- Good choice depends on task:
  - Regression, binary classification, multiclass, etc.
- ▶ Which loss?

# **Setting 1: Regression**

- Output can be any real number.
- Single output neuron.
- It makes sense to use a linear activation.

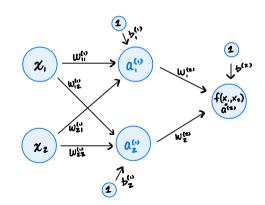


# **Setting 1: Regression**

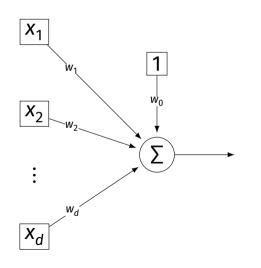
- Prediction should not be too high/low.
- It makes sense to use the mean squared error.

# **Setting 1: Regression**

- Suppose we use linear activation for output neuron + mean squared error.
- This is very similar to least squares regression...
- But! Features in earlier layers are learned, non-linear.



# **Special Case: Least Squares**



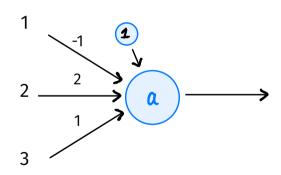
#### The case of:

- a one layer neural network
- with all linear activations
- trained with square loss

is also called **least** squares regression.

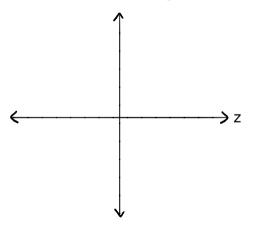
# **Setting 2: Binary Classification**

- Output can be in [0, 1].
- Single output neuron.
- We could use a linear activation, threshold.
- But there is a better way.



# **Sigmoids for Classification**

Natural choice for activation in output layer for binary classification: the **sigmoid**.



# **Binary Classification Loss**

We could use square loss for binary classification. There are several reasons not to:

1) Square loss penalizes predictions which are "too correct".

2) It doesn't work well with the sigmoid due to saturation.

# The Cross-Entropy

- ► Instead, we often train deep classifiers using the **cross-entropy** as loss.
- Let  $y^{(i)} \in \{0, 1\}$  be true label of ith example.
- The average cross-entropy loss:

$$-\frac{1}{n} \sum_{i=1}^{n} \left\{ \log f(\vec{x}^{(i)}), & \text{if } y^{(i)} = 1 \\ \log \left[ 1 - f(\vec{x}^{(i)}) \right], & \text{if } y^{(i)} = 0 \right\}$$

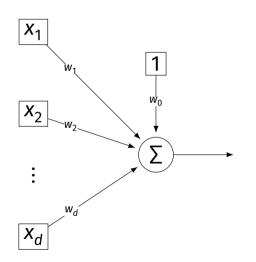
# The Cross-Entropy and the Sigmoid

Cross-entropy "undoes" the exponential in the sigmoid, resulting in less saturation.

# **Summary: Binary Classification**

- Use sigmoidal activation the output layer + cross-entropy loss.
- This will promote a strong gradient.
- Use whatever activation for the hidden layers (e.g., ReLU).

# **Special Case: Logisitic Regression**



#### The case of:

- a one layer neural network
- with sigmoid activation
- trained with cross-entropy loss

is also called **logistic** regression.

# DSC 1408 Representation Learning

Lecture 22 | Part 4

**Convolutions** 

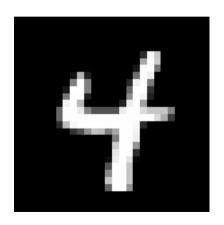
4 /---+

# From Simple to Complex

- Complex shapes are made of simple patterns
- ► The human visual system uses this fact
- ▶ Line detector → shape detector → ... → face detector
- Can we replicate this with a deep NN?

# **Edge Detector**

- How do we find vertical edges in an image?
- One solution: convolution with an edge filter.



**Vertical Edge Filter** 

- Take a patch of the image, same size as filter.
- Perform "dot product" between patch and filter.
- If large, this is a (vertical) edge.

| image patch |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|             |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|             |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|             |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

| f | ilter | : |
|---|-------|---|
|   |       |   |
|   |       |   |
|   |       |   |

| 0 | 0 | 0  | 0 | 0 | 0  |  |          |   |  |  |  |
|---|---|----|---|---|----|--|----------|---|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |          |   |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |          | 1 |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | <b>4</b> | _ |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | *        | - |  |  |  |
|   |   |    |   |   |    |  |          | J |  |  |  |
|   |   |    |   |   |    |  |          |   |  |  |  |
|   |   |    |   |   |    |  |          |   |  |  |  |

| 0 | 0 | 0  | 0 | 0 | 0  |  |    |            |  |  |  |
|---|---|----|---|---|----|--|----|------------|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |    |            |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |    | 7          |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | J. | <b>┤</b> _ |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | *  |            |  |  |  |
|   |   |    |   |   |    |  |    |            |  |  |  |
|   |   |    |   |   |    |  |    |            |  |  |  |
|   |   |    |   |   |    |  |    |            |  |  |  |

| 0 | 0 | 0  | 0 | 0 | 0  |  |   |          |            |  |  |  |
|---|---|----|---|---|----|--|---|----------|------------|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |   |          |            |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |   |          | 7          |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | * |          | <b>┤</b>   |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | • | $\vdash$ | <b>┤</b> ̄ |  |  |  |
|   |   |    |   |   |    |  |   |          |            |  |  |  |
|   |   |    |   |   |    |  |   |          |            |  |  |  |
|   |   |    |   |   |    |  |   |          |            |  |  |  |

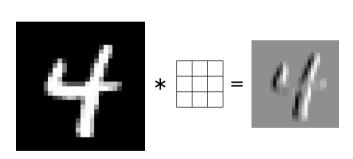
| 0 | 0 | 0  | 0 | 0 | 0  |  |   |   |  |  |  |
|---|---|----|---|---|----|--|---|---|--|--|--|
| 0 | 0 | .9 | 0 | 0 | .7 |  |   |   |  |  |  |
| 0 | 0 | .9 | 0 | 0 | .8 |  |   |   |  |  |  |
| 0 | 0 | .8 | 0 | 0 | .9 |  | * | = |  |  |  |
| 0 | 0 | .7 | 0 | 0 | 0  |  | • | _ |  |  |  |
|   |   |    |   |   |    |  |   |   |  |  |  |
|   |   |    |   |   |    |  |   |   |  |  |  |
|   |   |    |   |   |    |  |   |   |  |  |  |

| 0 | 0 | 0  | 0 | 0 | 0  |  | ]          |   |  |  |   |
|---|---|----|---|---|----|--|------------|---|--|--|---|
| 0 | 0 | .9 | 0 | 0 | .7 |  |            |   |  |  | Γ |
| 0 | 0 | .9 | 0 | 0 | .8 |  |            |   |  |  |   |
| 0 | 0 | .8 | 0 | 0 | .9 |  | *          | = |  |  |   |
| 0 | 0 | .7 | 0 | 0 | 0  |  | _ <b>^</b> | _ |  |  |   |
|   |   |    |   |   |    |  |            |   |  |  |   |
|   |   |    |   |   |    |  |            |   |  |  |   |
|   |   |    |   |   |    |  |            |   |  |  |   |

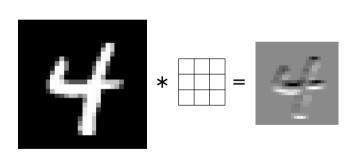
#### Convolution

- ► The result is the (2d) **convolution** of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

# **Example: Vertical Filter**



# **Example: Horizontal Filter**

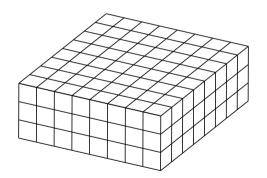


#### **More About Filters**

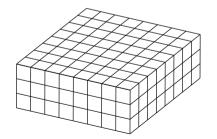
- ► Typically 3×3 or 5×5.
- ► Variations: different **stride**, image **padding**.

- Black and white images are 2-d arrays.
- But color images are 3-d arrays:
  - a.k.a., tensors
  - ► Three color **channels**: red, green, blue.
  - ► height × width × 3
- ► How does convolution work here?

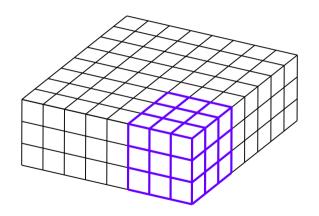
# **Color Image**



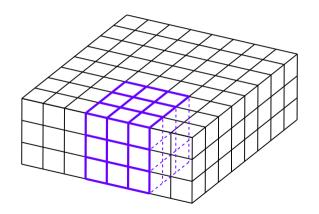
- ► The filter must also have three channels:
  - $\triangleright$  3 × 3 × 3, 5 × 5 × 3, etc.











#### **Convolution with 3-d Filter**

- Filter must have same number of channels as image.
  - ▶ 3 channels if image RGB.

Result is still a 2-d array.

#### **General Case**

- ► Input "image" has *k* channels.
- Filter must have *k* channels as well.
  - ► e.g., 3 × 3 × k
- ► Output is still 2 d

