psC /40&

Represaitaton [earm@

Lecture 22 Part1

Gradient Descent for NN Training

Empirical Risk Minimization
Collect a training set, {(X,)}

Pick the form of the prediction function, H.
E.g., a neural network, H.

Pick a loss function.

Minimize the empirical risk w.rt. that loss.

Minimizing Risk

To minimize risk, we often use vector calculus.
Either set V;,R(W) = 0 and solve...
Or use gradient descent: walk in opposite direction of
vV, R(W).

Recall, V;R(W) = (OR/ow,, OR/dwy, ..., 0R [ow,)"

In General

Let £ be the loss function, let H(X; W) be the
prediction function.

The empirical risk:

Training Neural Networks

For neural networks with nonlinear activations,
the risk R(W) is typically complicated.

The mininimizer cannot be found directly.

Instead, we use iterative methods, such as
gradient descent.

Iterative Optimization

To minimize a function f(X), we may try to
compute Vf(X); set to 0; solve.

Often, there is no closed-form solution.

How do we minimize f?

E
X
a
mpl
e

+(y
-3)%

)2

e
X2+
y2
+
(x
-2

C
0
n
S

i

der f

(x
'Y)

Example
Try solving Vf(x, y) = 0.

The gradient is:
R 2xeX* Y’ + 2(x - 2)
Vi(x,y) =
o) 2yeX2+V2 +2(y - 3)
Can we solve the system?
2xe** Y’ +2(x-2) = 0
2yeX’ Y’ 4+ 2(y-3) =0

Example
Try solving Vf(x, y) = 0.

The gradient is:

2xeX Y+ 2(x - 2))

Vf(Xr y) = (2yex2+y2 . 2(y B 3)

Can we solve the system? Not in closed form.
2xeX Y’ +2(x-2)=0
2yeX’ Y +2(y-3)=0

Idea

Apply an iterative approach.

c
R
—

1]

(@)
°

>

j -

©

—
ot
0

—

[g°]

<

(4]
-

©
ot

T
+—
wn

“Walk downhill”, towards

minimum.

Which way is down?

Consider a differentiable
function f(x, y).

We are standing at P = (x,, ¥,)-

Tangent plane at P

y
In a small region around P, f i

looks like a plane. z=fx.y)
Slope of plane in x, y /\
directions: T~y

of of
&(XO' Yo) a_y(xor Yo)

The Gradient

Let f : RY - R be differentiable. The gradient of
f at X is defined:

9760 = (2L (2) 2L, af())

90Xy " OXy T oxy

Note: Vf(X) is a function mapping RY — RY.

Which way is down?

. Tangent Plane atP
V£(Xy Y,) PoOints in direction £
of steepest ascent at (x,, y,).

= z=f(xy)
-Vf(x,, Yo) points in direction

of steepest descent at (x,, y,). /\
T~y

X

Gradient Properties

The gradient is used in the linear approximation
of f:

f(Xg *+ 6,0 Yo+ 8,) = F(Xo, Vo) *+ 6 - Vf(xg, Vo)

Important properties:
Vf(X) points in direction of steepest ascent at X.
-Vf(X) points in direction of steepest descent at X.
In directions orthogonal to V£(X), f does not change!
IVf(X)|| measures steepness of ascent

Gradient Descent

Pick arbitrary starting point X(?), learning rate
parameter n > 0.

Until convergence, repeat:
Compute gradient of f at X7; that is, compute Vf(x®).
Update X" = X0 - nvf(x").

When do we stop? . .
When difference between X and X" is negligible.
l.e., when || X% - x0*1| is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

while True:
Xx_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
break
X = X_new
return X

T
o~

@
N o ® © ¥ o 9

— — o o o o o 0_

Backprop Revisited

The weights of a neural network can be trained
using gradient descent.

This requires the gradient to be calculated
repeatedly; this is where backprop enters.

Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.

Backprop Revisited

Consider training a NN using the square loss:

Backprop Revisited

Interpretation:

2 n
_E (i) ()
n X’ y, YH()

Error Blame

When used in SGD, backprop “propagates error
backward” in order to update weights.

Difficulty of Training NNs

Gradient descent is guaranteed to find optimum
when objective function is convex.’

N

TAssuming it is properly initialized

Difficulty of Training NNs

When activations are non-linear, neural network
risk is highly non-convex:

N

A

Non-Convexity

When R is non-convex, GD can get “stuck” in local
minima.
Solution depends on initialization.

More sophisticated optimizers, using

momentum, adaptation, better initialization, etc.
Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

Deep networks can suffer from the problem of
vanishing gradients: if w is a weight at the
“front” of the network, oH/ow can be very small

Vanishing Gradients

If 0H/ow is always close to zero, w is updated
very slowly by gradient descent.

In short: early layers are slower to train.

One mitigation: use RelLU instead of sigmoid.

N

Vanishing Gradients

v

Sigmoid

N

pDsC /1408

Represaitahon [earnzg

Lecture 22 @ Part 2

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

== Z{’(H(x

-_—

Observation

The gradient of the risk function is a sum of
gradients:

VR(W) = %
i=1

One term for each point in training data.

Problem

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when
nis large.

Therefore, each step of gradient descent can be
expensive.

Idea

The (full) gradient of the risk uses all of the
training data:

It is an average of n gradients.

Idea: instead of using all n points, randomly
choose « n.

Stochastic Gradient

Choose a random subset (mini-batch) B of the
training data.

Compute a stochastic gradient:

VR(W) = Y VR(H(X;), y;)

ieB

Stochastic Gradient
VR(W) = > VR(H(XD; @), y;)
ieB
Good: if |B| < n, this is much faster to compute.

Bad: it is a (random) approximation of the full
gradient, noisy.

Stochastic Gradient Descent (SGD)
for ERM

Pick arbitrary starting point X(?), learning rate
parameter n > 0, batch size m < n.

Until convergence, repeat:
Randomly sample a batch B of m training data points
(on each iteration).
Compute stochastic gradient of f at X():

Z VE(H(XD; W),

ieB

Update X0V = 30 - ng

Idea

In practice, a stochastic gradient often works
well enough.

It is better to take many noisy steps quickly than
few exact steps slowly.

Batch Size

Batch size m is a parameter of the algorithm.

The larger m, the more reliable the stochastic
gradient, but the more time it takes to compute.

Extreme case when m = 1 will still work.

Usefulness of SGD

SGD allows learning on massive data sets.

Useful even when exact solutions available.
E.g., least squares regression / classification.

Training NNs in Practice

There are several Python packages for training

NNs:
PyTorch
Tensorflow / Keras

This week’s discussion was a Tensorflow tutorial.

pDsC /14o0&

Represaitaton [earm@

Lecture 22 ' Part 3
Output Units

Output Units

As with units in hidden layers, can choose
different activation functions for the outputs

layey.
What activation function?
How many units?

Good choice depends on task:
Regression, binary classification, multiclass, etc.

Which loss?

Setting 1: Regression

Output can be any real 1

number. -1 @
Single output neuron. 2\
It makes sense to use a 1
linear activation.
3

Setting 1: Regression
Prediction should not be too high/low.

It makes sense to use the mean squared error.

Setting 1: Regression

Suppose we use linear
activation for output
neuron + mean squared
error.

This is very similar to least
squares regression...

But! Features in earlier
layers are learned,
non-linear.

® .

v

)
& \
Kﬂ)

®
\Lb(!Q

Special Case: Least Squares

The case of:
X, a one layer neural network
\wz\ with all linear activations

trained with square loss
<:> is also called least
/ squares regression.

Setting 2: Binary Classification

Output can be in [0, 1].
Single output neuron.

We could use a linear
activation, threshold.

But there is a better way.

Sigmoids for Classification

Natural choice for activation in output layer for
binary classification: the sigmoid.

N

n
\\%
N

Binary Classification Loss

We could use square loss for binary
classification. There are several reasons not to:

1) Square loss penalizes predictions which are
“too correct”.

2) It doesn’t work well with the sigmoid due to
saturation.

The Cross-Entropy

Instead, we often train deep classifiers using the
cross-entropy as loss.

Let y() € {0, 1} be true label of ith example.

The average cross-entropy loss:

K i log (%), if y() =
n 2 log[1 - FROY], iy =

The Cross-Entropy and the Sigmoid

Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.

Summary: Binary Classification

Use sigmoidal activation the output layer +
cross-entropy loss.

This will promote a strong gradient.

Use whatever activation for the hidden layers
(e.g., RelLU).

Special Case: Logisitic Regression

h
N
:) /

@_.

The case of:
a one layer neural network
with sigmoid activation
trained with cross-entropy
loss

is also called logistic

regression.

pDsC /14o0&

Represaitahon [earntg

Lecture 22 Part &4

Convolutions

From Simple to Complex
Complex shapes are made of simple patterns
The human visual system uses this fact

Line detector — shape detector — ... - face
detector

Can we replicate this with a deep NN?

Edge Detector

How do we find vertical
edges in an image?

One solution: convolution
with an edge filter.

Vertical Edge Filter

Idea

Take a patch of the image,
same size as filter.

Perform “dot product”
between patch and filter.

If large, this is a (vertical)
edge.

image patch:

filter:

Idea

Move the filter over the entire image, repeat
procedure.

olofJolofo]o
olololo|o]|.7
olo|oflo]ol.s
olo|.8[o]o0]f.9 _
olo|.7{0]o0]o0 * -

Idea

Move the filter over the entire image, repeat
procedure.

olofJololo]o
olololo]o]|.7
olofoflo]ols
olo|.8[o]o0]f.9 _
olo|.7{0]o0]o0 * -

Idea

Move the filter over the entire image, repeat
procedure.

olofJolo]o]o
oloflolo]o]7
o|lofofo]o].s
o|lo|.8[o]o0]f.9 _
olo|.7{0]o0]o0 * -

Idea

Move the filter over the entire image, repeat
procedure.

olofo|ofo]o
olololo|o]|.7
olo|oflo]ol.s
olo|8flo]o]f.9 _
olo|.7l0]o0]o0 * -

Idea

Move the filter over the entire image, repeat
procedure.

olofo|ofo]o
ololololo]|.7
olo|ofo]ols
olo|.8lo]o]f.9 _
olo|.7[0]o0]o0 * -

Convolution

The result is the (2d) convolution of the filter
with the image.

Output is also 2-dimensional array.

Called a response map.

Example: Vertical Filter

* -

Example: Horizontal Filter

+ B

More About Filters

Typically 3x3 or 5x5.

Variations: different stride, image padding.

3-d Filters

Black and white images are 2-d arrays.

But color images are 3-d arrays:
a.k.a., tensors
Three color channels: red, green, blue.
height x width x 3

How does convolution work here?

Color Image

3-d Filter

The filter must also have three channels:

3x3x3,5x5x3, etc.

3-d Filter

3-d Filter

3-d Filter

Convolution with 3-d Filter

Filter must have same number of channels as
image.
3 channels if image RGB.

Result is still a 2-d array.

General Case

has kR

Input “image”

channels.

NN
[[][]

I

L]]]

L]]]

[L[]

x R

Filter must have R
£.,3x3

channels as well.
e.g.,
Outputisstill2-d

