10/2: Alexalet

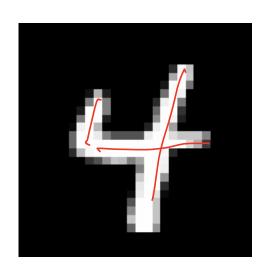
ImagrowNet

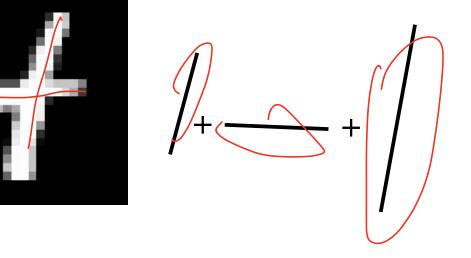
DSC 1408 Representation Learning

Lecture 23 | Part 1

Convolutions

Transformer

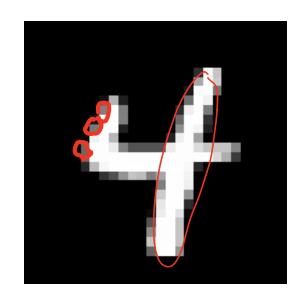




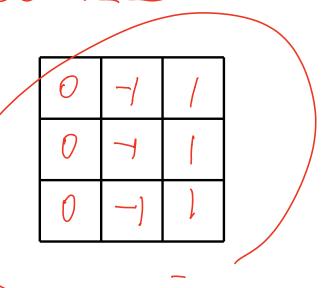
From Simple to Complex

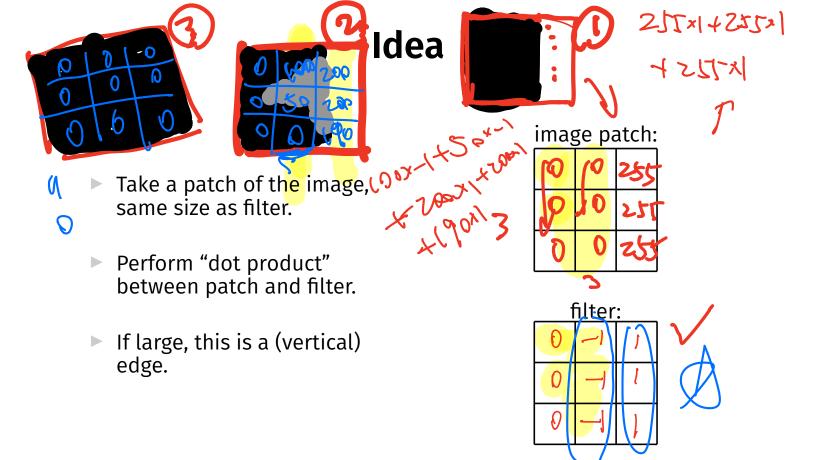
- Complex shapes are made of simple patterns
- ► The human visual system uses this fact
- Line detector → shape detector → ... → face detector
- Can we replicate this with a deep NN?

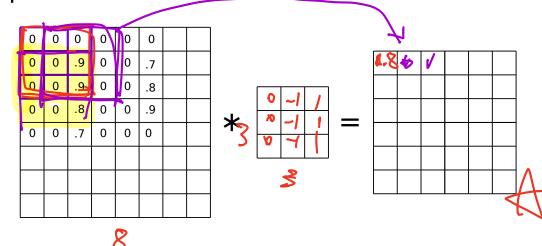
- How do we find vertical edges in an image?
- One solution: convolution with an edge filter.



Vertical Edge Filter



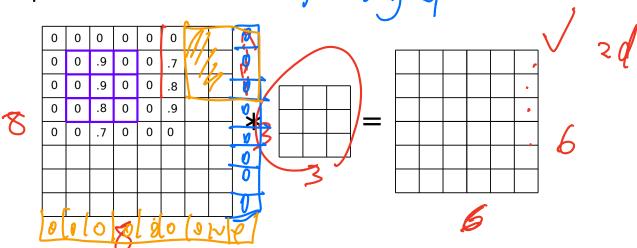




0	0	0	0	0	0									
0	0	.9	0	0	.7		*							
0	0	.9	0	0	.8					\neg				
0	0	.8	0	0	.9						_			
0	0	.7	0	0	0					-	=			

0	0	0	0	0	0							
0	0	.9	0	0	.7							
0	0	.9	0	0	.8							
0	0	.8	0	0	.9		*		_			
0	0	.7	0	0	0				_			

0	0	.7	0	0	.9		*	=			
								ı			

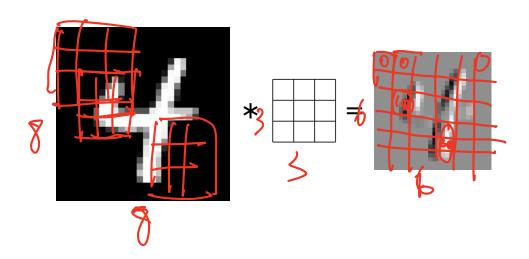


Convolution

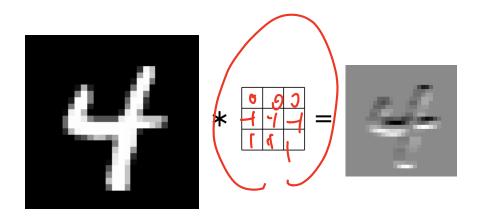
- ► The result is the (2d) **convolution** of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

feasure may

Example: Vertical Filter



Example: Horizontal Filter

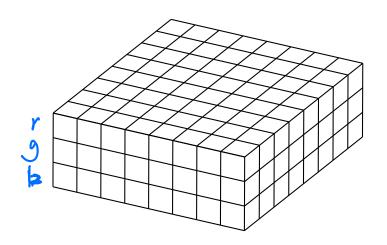


More About Filters

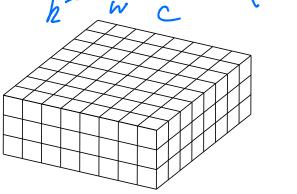
- Typically 3×3 or 5×5.
- ► Variations: different stride, mage padding. ☐

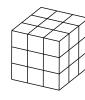
- Black and white images are 2-d arrays.
- But color images are 3-d arrays:
 - a.k.a., tensors
 - Three color channels: red, green, blue.
 - height × width × 3
- How does convolution work here?

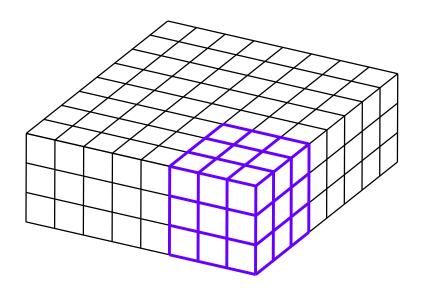
Color Image

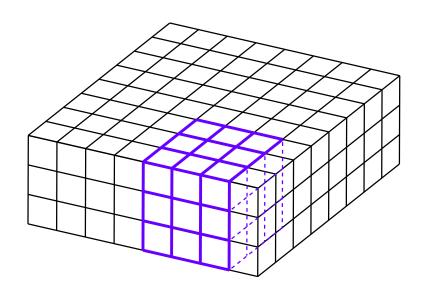


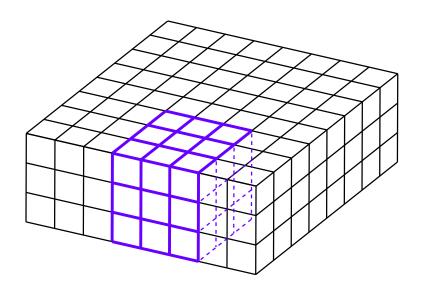
► The filter must also have three channels:









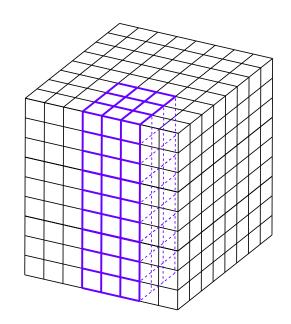


Convolution with 3-d Filter

- Filter must have same number of channels as image.
 - 3 channels if image RGB.
- Result is still a 2-d array.

General Case

- Input "image" has *k* channels.
- Filter must have *k* channels as well.
 - \triangleright e.g., $3 \times 3 \times k$
- ► Output is still 2 *d*



DSC 1408 Representation Learning

Lecture 23 | Part 2

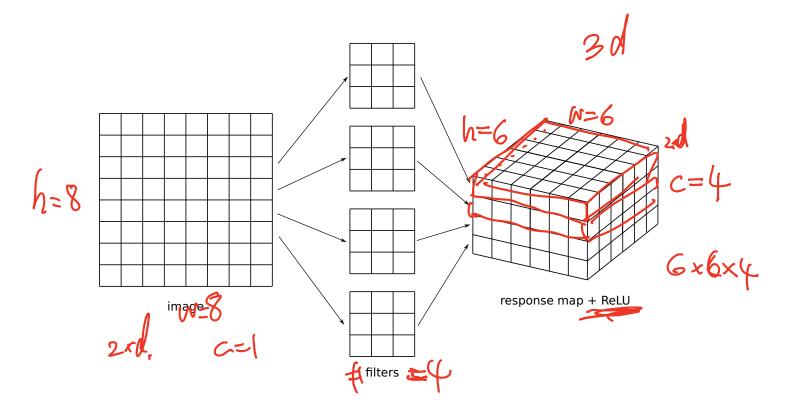
Convolutional Neural Networks

Convolutional Neural Networks

ConvNet

- CNNs are the state-of-the-art for many computer vision tasks
- ► **Idea**: use convolution in early layers to create new feature representation.
- But! Filters are learned.

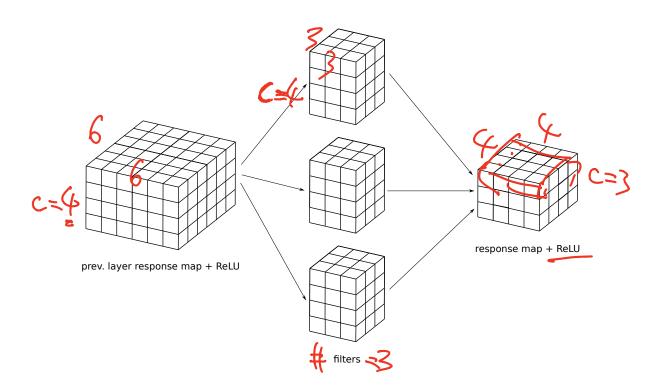
Input Convolutional Layer



Input Convolutional Layer

- Input image with one channel (grayscale)
- \triangleright k_1 filters of size $\ell \times \ell \times 1$
- Results in k_1 convolutions, stacked to make response map.
- ReLU (or other nonlinearity) applied entrywise.

Second Convolutional Layer



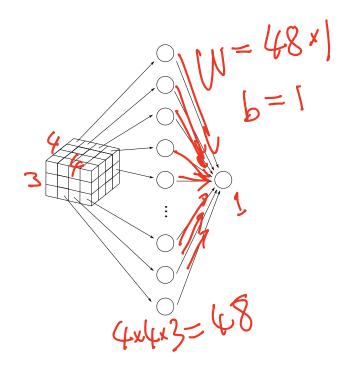
Second Convolutional Layer

- ► Input is a 3-d **tensor**.
 - ▶ "Stack" of k_1 response maps.
- \triangleright k_2 filters, each a 3-d tensor with k_1 channels.
- ightharpoonup Output is a 3-d tensor with k_2 channels.

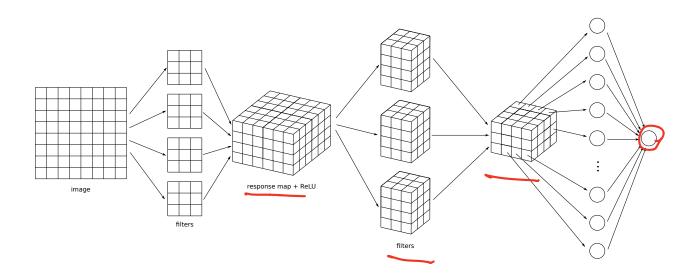
More Convolutional Layers

- May add more convolutional layers.
- Last convolutional layer used as input to a feedforward, fully-connected network.
- Need to "flatten" the output tensor.

Flattening



Full Network



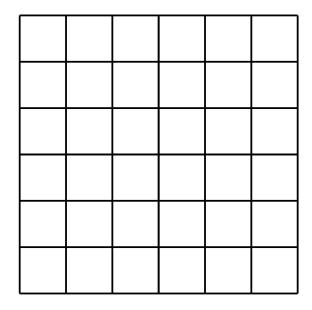
What is learned?

► The filters themselves.

► The weights in the feedforward NN used for prediction.

Max Pooling

- Max pooling is an important part of convolutional layers in practice.
- Reduces size of response map, number of parameters.



DSC 1408 Representation Learning

Lecture 23 | Part 3

Example: Image Classification

Problem

Predict whether image is of a car or a truck.

Details

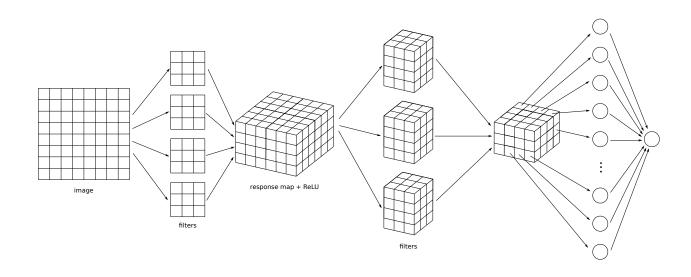
- ► 3-channel 32 × 32 color images
- ► 10,000 training images; 2,000 test¹
- Cars, trucks in different orientations, scales
- ▶ Balanced: 50% cars, 50% trucks

¹CIFAR-10

Approach #1: Least Squares Classifier

- Train directly on raw features (grayscale)
- Result: 72% train accuracy, 63% test accuracy
- Need a better feature representation

Approach #2: Convolutional Neural Network



Architecture

- ▶ 3 convolutional layers with 32, 64, 64 filters
- ReLU, max pooling after first two
- Dense layer with 64 hidden neurons, ReLU
- Output layer with sigmoid activation
- Minimize cross-entropy loss; use dropout

The Code

```
model = keras.models.Sequential()
model.add( keras.layers.Conv2D(32, (7, 7), activation='relu', input_shape=(32, 32, 1)))
model.add(keras.layers.MaxPooling2D((2, 2)))
model.add(keras.layers.Conv2D(64, (5, 5), activation='relu'))
model.add(keras.layers.MaxPooling2D((2, 2)))
model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
```

The Code

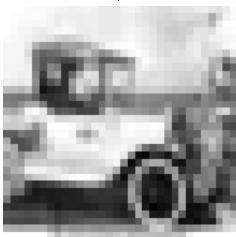
```
model.compile(
    optimizer=keras.optimizers.RMSprop(),
    loss=keras.losses.BinaryCrossentropy(),
    metrics=['accuracy']
model.fit(
    X_train,
    y_train,
    epochs=30,
    validation_data=(X_test, y_test)
```

▶ 94% train accuracy, 90% test accuracy

truck / car

truck / truck

truck / truck



truck / truck

truck / truck

car / car

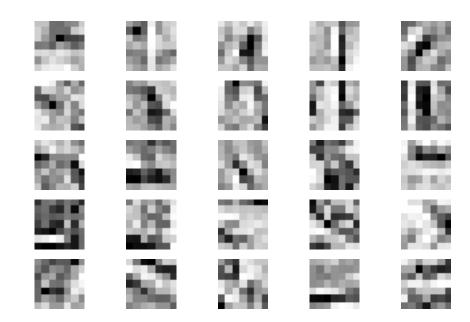
car / truck

truck / car

truck / truck

car / car

Filters



Next Steps

- In practice, you might not train your own CNN
- Instead, take "pre-trained" convolutional layers from a much bigger network
- Attach untrained fully-connected layer and train
- This is transfer learning