DSC 140B Representation Learning

Lecture 24 | Part 1

Autoencoders

Generalizing PCA

- ▶ We started the quarter with PCA.
- PCA is a linear method.
- We can generalize upon PCA to derive nonlinear representation learners.

Representation Learning

At a high level, representation learning finds an encoding function $encode(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^k$.

Ideally, this function captures useful aspects of the data distribution.

Example: PCA

In PCA, we encode a point x by projecting it onto the top k eigenvectors of data covariance matrix:

 $encode(\vec{x}) = U^T \vec{x}$

Decoding

- Encoding can decrease dimensionality.
- Intuitively, we may want to preserve as much "information" about x as possible.
- We should be able to decode the encoding and reconstruct the original point, approximately.

 $\vec{x} \approx \text{decode}(\text{encode}(\vec{x}))$

Example: PCA

▶ In PCA, given a point $\vec{z} \in \mathbb{R}^k$ in the new representation, the reconstruction is:

 $decode(\vec{z}) = U\vec{z}$

Representation Learning

► **Goal:** find an encoder (and decoder) such that encode(decode(\vec{x})) $\approx \vec{x}$

Reconstruction Error

- In general, decode(encode(x)) will not be exactly equal to x.
- One way of quantifying the difference w.r.t. data is the (l₂) reconstruction error:

$$\sum_{i=1}^{n} \|\vec{x}^{(i)} - \text{decode}(\text{encode}(\vec{x}^{(i)}))\|^2$$

Note

Of course, it is trivial to find an encoder/decoder with zero reconstruction error:

$$encode(\vec{x}) = \vec{x} = decode(\vec{x})$$

Such an encoder is not useful.

Instead, we constrain the form of the encoder so that it cannot simply copy the input.

Example: PCA

- Assume encode(x) = Ux, for some matrix U whose k ≤ d columns are orthonormal.
 That is, the encoding is an orthogonal projection.
- **Goal:** find *U* to minimize reconstruction error on a dataset $\vec{x}^{(1)}, ..., \vec{x}^{(d)}$.
- Solution: pick columns of U to be top k eigenvectors of data covariance matrix.

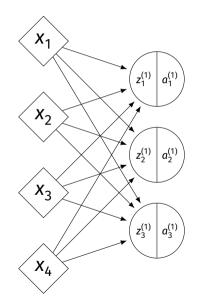
Now

- encode(\vec{x}) = $U\vec{x}$ is a linear encoding function.
- What if we let encode be nonlinear?
- ► That is, let's generalize PCA.

Encoder as a Neural Network

- Assume encode(\vec{x}) is a (deep) **neural network**.
- Output is not a single number, but k numbers.
 I.e., a vector in R^k
- Can use nonlinear activations, have more than one layer.

Encoder as a Neural Network



Encoder as a Neural Network

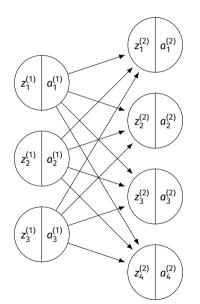
- The output of the encoder is the new representation.
- ► To train the encoder, we'll need a **decoder**.

Decoder as a Neural Network

Assume decode(\vec{z}) is a (deep) **neural network**.

- Output is not a single number, but *d* numbers.
 Same dimensionality as original input, *x*.
 - ▶ I.e., a vector in \mathbb{R}^d
- Can use nonlinear activations, have more than one layer.

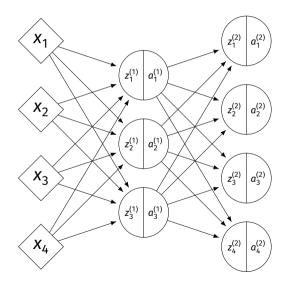
Decoder as a Neural Network



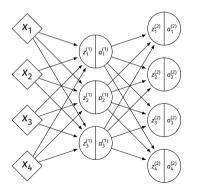
decode(encode(\vec{x})) as a NN

► Together, decode(encode(\vec{x})) is a neural network $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^d$.

decode(encode(\vec{x})) as a NN



Training



- ► We want $H(\vec{x}) \approx \vec{x}$
- One approach: train network to minimize reconstruction error.

$$\begin{split} \sum_{i=1}^{n} \|\vec{x}^{(i)} - H(\vec{x}^{(i)})\|^2 &= \sum_{i=1}^{n} \sum_{j=1}^{d} (\vec{x}_j^{(i)} - (H(\vec{x}^{(i)}))_j)^2 \\ &= \sum_{i=1}^{n} \sum_{j=1}^{d} (\vec{x}_j^{(i)} - a_j^{(2)}(\vec{x}^{(i)}))^2 \end{split}$$

Training

- The network can be trained using gradient-based methods.
 - E.g., stochastic gradient descent.
- Note: this is an **unsupervised** learning problem.

Autoencoders

When the encoder/decoder are NNs, H(x) = decode(encode(x)) is an autoencoder.

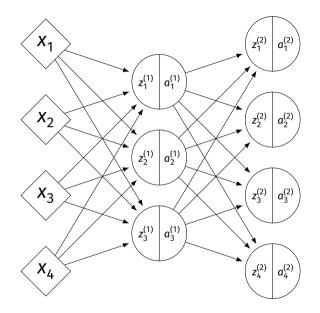
Generalizing PCA

- We can view autoencoders as generalizations of PCA.
- Consider again the encoder that performs an orthogonal projection:

 $encode(\vec{x}) = U^T \vec{x}$

 $decode(\vec{z}) = U\vec{z}$

encode/decode are neural networks (with linear activations).



Exercise

True/False: training an autoencoder to minimize reconstruction error will result in the same $encode(\vec{x})$ function as PCA.

Answer: False

- PCA minimizes reconstruction error subject to the constraint that the columns of U are orthonormal.
- Without the orthonormality constraint, the autoencoder learns a different encoding.
- However, the autoencoder learns a (non-orthogonal) projection into the same space as PCA.

In other words...

- PCA is an autoencoder trained with an additional orthonormality constraint.
- Cannot easily be learned by gradient descent; find eigenvectors instead.

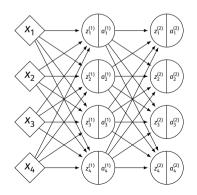
Uses of Autoencoders

Like PCA, autoencoders can be used for dimensionality reduction.

- Unlike PCA, autoencoders can learn nonlinear maps.
- Encoded data can be used as input to predictive model, etc.

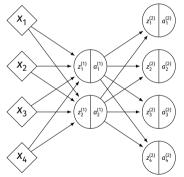
Dimensionality Reduction

If the dimensionality of the encoder is the same as the dimensionality of x, the autoencoder can learn to simply reproduce the input.



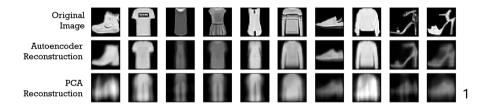
Dimensionality Reduction

► As such, we choose number of hidden nodes < *d*.



Called an undercomplete autoencoder.

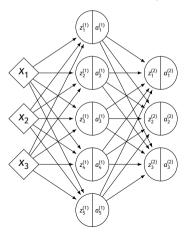
Example



¹By Michela Massi - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=80176900

Other Uses

However, sometimes it is useful for hidden layer to have greater dimensionality.



Denoising Autoencoders

- One such case is in denoising autoencoders.
- Idea: train an autoencoder to remove noise.
- Add random noise to each $\vec{x}^{(i)}$ to get $\tilde{x}^{(i)}$.
- Train network so that $H(\tilde{x}^{(i)}) \approx \vec{x}$.

Representation Learning

Lecture 24 | Part 2

Conclusion of DSC 140B

Recap

- DSC 140B was about representation learning.
- We saw PCA, Laplacian Eigenmaps, RBF Networks, neural networks and deep learning
- Learned ML methods, but also theoretical tools for understanding why other ML methods work

More Deep Learning

- We have only scratched the surface of deep learning.
 - LSTMs, transformer models, graph neural networks, deep RL, GANs, etc.
- In this class, we focused on the fundamental principles behind NNs.
- You might consider taking CSE 151B.

Thanks!