DEC $140 B$ Representation Learning Lecture $03 \mid$ Part 1
Functions of a Vector

Functions of a Vector

- In ML, we often work with functions of a vector: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$.
- Example: a prediction function, $H(\vec{x})$.
- Functions of a vector can return:
\rightarrow a number: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$
\rightarrow a vector $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- something else?

Transformations

- A transformation \vec{f} is a function that takes in a vector, and returns a vector of the same dimensionality.

That is, $\vec{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

Visualizing Transformations

- A transformation is a vector field.
\checkmark Assigns a vector to each point in space.
- Example: $\vec{f}(\vec{x})=\left(3 x_{1}, x_{2}\right)^{\top}$

Example

$$
\vec{f}(\vec{x})=\left(3 x_{1}, x_{2}\right)^{\top}
$$

,

Arbitrary Transformations

- Arbitrary transformations can be quite complex.

Arbitrary Transformations

- Arbitrary transformations can be quite complex.

Linear Transformations

- Luckily, we often ${ }^{1}$ work with simpler, linear transformations.
- A transformation f is linear if:

$$
\vec{f}(\alpha \vec{x}+\beta \vec{y})=\alpha \vec{f}(\vec{x})+\beta \vec{f}(\vec{y})
$$

Checking Linearity
To check if a transformation is linear, use the definition.

$$
\begin{aligned}
& \stackrel{\text { Example: } \vec{f}(\vec{x})=\left(x_{2},-x_{1}\right)^{\top}}{\vec{f}(\alpha \vec{x}+\beta \vec{y})=\cdots f(\vec{x})+\beta(\vec{y})} \\
& \vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{\alpha}
\end{array}\right) \quad \vec{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{d}
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{lll}
\alpha \vec{a} \beta \vec{b} & \vec{f}(\alpha \vec{a}+\beta \vec{b}) \neq \alpha f(\vec{a})+\beta f(\vec{b}) \\
& \vec{\alpha}=2 \\
\beta=3 & \vec{a}=\binom{1}{1} \vec{b}=\binom{2}{3}
\end{array}
$$

Exercise
Let $\vec{f}(\vec{x})=\left(x_{1}+3, x_{2}\right)$. Is \vec{f} a linear transformation?

$$
\begin{aligned}
& \alpha \vec{a}+\beta \vec{b}=2\binom{1}{1}+3\binom{2}{3}=\binom{2}{2}+\binom{6}{9}=\binom{8}{11} \\
& \vec{f}(\alpha \vec{a}+\beta \vec{b})=\vec{f}\left(\binom{8}{11}\right)=\binom{11}{11} \\
& \alpha f(\vec{a})+\beta f(\vec{b})=2 f\binom{1}{1}+3 f\binom{2}{3}=2\binom{4}{1}+3\binom{5}{3}=\binom{23}{11}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=2 \\
& \beta=3
\end{aligned} \quad \vec{a}=\binom{1}{1} \quad \vec{b}=\binom{2}{1}
$$

Exercise
Let $\vec{f}(\vec{x})=\left(x_{1}+3, x_{2}\right)$. Is \vec{f} a linear transformation?

$$
\begin{aligned}
& \alpha \vec{a}+\beta \vec{b}=2\binom{1}{1}+3\binom{2}{1}=\binom{2}{2}+\binom{6}{3}=\binom{8}{5} \\
& \vec{f}(\alpha \vec{a}+\beta \vec{b})=\vec{f}\left(\binom{8}{5}\right)=\binom{1}{5} \\
& \alpha f(\vec{a})+\beta f(\vec{b}) \quad 2 f\binom{1}{1}+3 f\binom{2}{1}=2\binom{4}{1}+3\binom{5}{1}=\binom{23}{5}
\end{aligned}
$$

Implications of Linearity

- Suppose \vec{f} is a linear transformation. Then:

$$
\begin{aligned}
\vec{f}(\vec{x}) & =\vec{f}\left(x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}\right) \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)
\end{aligned}
$$

\checkmark I.e., \vec{f} is totally determined by what it does to the basis vectors.

The Complexity of Arbitrary Transformations

- Suppose f is an arbitrary transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{T}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{T}$.
- I tell you $\vec{x}=\left(x_{1}, x_{2}\right)^{T}$.
- What is $\vec{f}(\vec{x})$?

The Simplicity of Linear Transformations

- Suppose f is a linear transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{T}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{T}$.
- I tell you $\vec{x}=\left(x_{1}, x_{2}\right)^{T}$.
- What is $\vec{f}(\vec{x})$?

$$
\vec{f}(\dot{x})=\vec{f}\left(x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}\right)=x_{1} f\left(\hat{e}^{(1)}\right)+x_{2} f\left(\hat{e}^{(2)}\right)
$$

because of linearity!
Exercise

- Suppose f is a linear transformation.
- I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{\top}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{\top}$.
- I tell you $\vec{x}=(3,-4)^{T}$.
- What is $\vec{f}(\vec{x})$?

$$
\begin{array}{rl|l}
f\left(\binom{3}{-4}\right) & =3 f\left(\hat{e}^{(1)}\right)-4 f\left(\hat{e}^{(2)}\right) \\
& =3\binom{2}{1}-4\left(\begin{array}{l}
-3 \\
-1 \\
-1
\end{array}\right) & =2 f\left(\hat{e}^{(11)}\right)-1 f\left(\hat{e}^{(2)}\right) \\
& =2\left(\begin{array}{l}
6 \\
3 \\
3
\end{array}\right)+\binom{12}{0}=\binom{18}{3} & \\
& =\binom{4}{2}+\binom{3}{0}=\binom{7}{2}
\end{array}
$$

Exercise
Suppose f is a linear transformation.
\Rightarrow I tell you $\vec{f}\left(\hat{e}^{(1)}\right)=(2,1)^{\top}$ and $\vec{f}\left(\hat{e}^{(2)}\right)=(-3,0)^{T}$.

- I tell you $\vec{x}=(3,-4)^{\top}$.
- What is $\vec{f}(\vec{x})$?

$$
\begin{aligned}
\vec{x}=\binom{x_{1}}{x_{2}} \quad \vec{f}(\vec{x}) & =x_{1}\binom{2}{1}+x_{2}\binom{-3}{0} \\
& =\binom{2 x_{1}-3 x_{2}}{x_{1}}
\end{aligned}
$$

Key Fact

- Linear functions are determined entirely by what they do on the basis vectors.
- I.e., to tell you what f does, I only need to tell you $\vec{f}\left(\hat{e}^{(1)}\right)$ and $\vec{f}\left(\hat{e}^{(2)}\right)$.
- This makes the math easy!

Example Linear Transformation

$$
\vec{f}(\vec{x})=\left(x_{1}+3 x_{2},-3 x_{1}+5 x_{2}\right)^{T}
$$

Another Example Linear Transformation

$$
\vec{f}(\vec{x})=\left(2 x_{1}-x_{2},-x_{1}+3 x_{2}\right)^{\top}
$$

Note

- Because of linearity, along any given direction \vec{f} changes only in scale.

$$
\vec{f}(\lambda \hat{x})=\lambda \vec{f}(\hat{x})
$$

$$
\begin{aligned}
& f(\vec{x}) \\
& f(2 \vec{x})=2 f(\vec{x})
\end{aligned}
$$

Linear Transformations and Bases

- We have been writing transformations in coordinate form. For example:

$$
\vec{f}(\vec{x})=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{T}
$$

- To do so, we assumed the standard basis.
- If we use a different basis, the formula for \vec{f} changes.

Example
Suppose that in the standard basis, $\vec{f}(\vec{x})=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{T}$.
Let $\hat{u}^{(1)}=\frac{1}{\sqrt{2}}(1,1)^{\top}$ and $\hat{u}^{(2)}=\frac{1}{\sqrt{2}}(-1,1)^{\top}$.
\Rightarrow Write $[\vec{x}]_{\mathcal{U}^{2}}^{\sqrt{2}}=\left(z_{1}, z_{2}\right)^{T} \rightarrow \hat{x}^{2}=z_{1} \hat{u}^{(1)}+z_{2} \hat{u}^{(2)}$
What is $[\vec{f}(\vec{x})]_{\mathcal{U}}$ in terms of z_{1} and z_{2} ?

$$
\begin{gathered}
\vec{f}(\vec{x})=\alpha \hat{u}^{(1)}+\beta \hat{u}^{(2)} \\
\vec{f}\left(\hat{u}^{(1)}\right)=\vec{f}\left(\frac{1}{\sqrt{2}}\binom{1}{1}\right)=\frac{1}{\sqrt{2}} \vec{f}\binom{1}{1}=\frac{1}{\sqrt{2}}\binom{2}{0}=\frac{2}{\sqrt{2}} \hat{e}^{(1)} \\
\vec{f}\left(\hat{u}^{(2)}\right)=\vec{f}\left(\frac{1}{\sqrt{2}}\binom{-1}{1}\right)=\frac{1}{\sqrt{2}} \vec{f}\binom{-1}{1}=\frac{1}{\sqrt{2}}\binom{0}{-2}=\frac{-2}{\sqrt{2}} \hat{e}^{(2)}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { - Suppose that in the standard basis, } \vec{f}(\vec{x})=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{\top} \text {. } \\
& \text { Let } \hat{u}^{(1)}=\frac{1}{\sqrt{2}}(1,1)^{\top} \text { and } \hat{u}^{(2)}=\frac{1}{\sqrt{2}}(-1,1)^{\top} \text {. } \\
& \text { - Write }[\vec{x}]_{U}=\left(z_{1}, z_{2}\right)^{\top} \text {. } \\
& \text { - What is }[\vec{f}(\vec{x})]_{\mathcal{U}} \text { in terms of } z_{1} \text { and } z_{2} \text { ? } \\
& \vec{f}\left(\vec{u}^{(1)}\right)=\frac{1}{\sqrt{2}}\binom{2}{0} \quad\left[\vec{f}\left(\vec{u}^{(1)}\right)\right]_{u}=\binom{\vec{f}\left(\hat{u}^{(1)}\right) \cdot \hat{u}^{(1)}}{\vec{f}\left(\hat{u}^{(1)}\right) \cdot \hat{u}^{(2)}} \\
& \vec{f}\left(\hat{u}^{(1)}\right) \cdot \hat{u}^{(1)}=\frac{1}{\sqrt{2}}\binom{2}{0} \cdot \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{2} 2=1 \\
& \vec{f}\left(\hat{u}^{(1)}\right) \cdot \hat{u}^{(2)}=\frac{1}{\sqrt{2}}\binom{2}{0} \cdot \frac{1}{\sqrt{2}}\binom{-1}{1}=\frac{1}{2}(-2)=-1 \\
& {\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{u}=\binom{1}{-1} \Leftrightarrow{ }^{2} \vec{f}\left(\hat{u}^{(1)}\right)=\hat{u}^{(1)}-\hat{u}^{(2)}}
\end{aligned}
$$

Example

- Suppose that in the standard basis, $\vec{f}(\vec{x})=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{\top}$.

Let $\hat{u}^{(1)}=\frac{1}{\sqrt{2}}(1,1)^{\top}$ and $\hat{u}^{(2)}=\frac{1}{\sqrt{2}}(-1,1)^{\top}$.

- Write $[\vec{x}]_{U}=\left(z_{1}, z_{2}\right)^{\top}$.

$$
\begin{aligned}
& {\left[f\left(\hat{u}^{(2)}\right)\right]_{u} \quad \vec{f}\left(\hat{u}^{(2)}\right)=\vec{f}\left(\frac{1}{\sqrt{2}}\binom{-1}{1}\right)=\frac{1}{\sqrt{2}} \vec{f}\binom{-1}{1}=\frac{1}{\sqrt{2}}\binom{0}{-2}} \\
& \vec{f}\left(\hat{u}^{(2)}\right) \cdot \hat{u}^{(2)}=\frac{1}{\sqrt{2}}\binom{0}{-2} \cdot \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{2}-2=-1 \\
& \vec{f}\left(\hat{u}^{(2)}\right) \cdot \hat{u}^{(2)}=\frac{1}{\sqrt{2}}\binom{0}{-2} \cdot \frac{1}{\sqrt{2}}\binom{-1}{1}=\frac{1}{2}-2=-1 \\
& {\left[f\left(\hat{u}^{(2)}\right)\right]_{u}=\binom{-1}{-1} \Leftrightarrow f\left(\hat{u}^{(2)}\right)=-\hat{u}^{(1)}-\hat{u}^{(2)}}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{f}\left(\hat{u}^{(1)}\right)=\hat{u}^{(1)}-\hat{u}^{(2)} \\
& \vec{f}\left(\hat{u}^{(2)}\right)=-\hat{u}^{(2)}-\hat{u}^{(2)} \quad \text { Example } \\
& \text { - Suppose that in the standard basis, } \vec{f}(\vec{x})=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{\top} \text {. } \\
& \text { - Let } \hat{u}^{(1)}=\frac{1}{\sqrt{2}}(1,1)^{\top} \text { and } \hat{u}^{(2)}=\frac{1}{\sqrt{2}}(-1,1)^{\top} \text {. } \\
& \text { - Write }[\overrightarrow{ }]_{u}=\left(z_{1}, z_{2}\right)^{\top} . \quad \vec{x}=\hat{\sqrt{2}} z_{1} \hat{u}^{(1)}+z_{2} \hat{u}^{(2)} \\
& \text { - What is }[\vec{f}(\vec{x})]_{1} \text { in terms of } z_{1} \text { and } z_{2} \text { ? } \\
& \vec{f}(\vec{x})=z_{1} \vec{f}\left(\hat{u}^{(0)}\right)+z_{2} f\left(\hat{u}^{(2)}\right) \\
& =z_{1}\left[\hat{u}^{(1)}-\hat{u}^{(2)}\right]+z_{2}\left[-\hat{u}^{(1)}-\hat{u}^{(2)}\right] \\
& =\left(z_{1}-z_{2}\right) \hat{u}^{(1)}+\left(-z_{1}-z_{2}\right) \hat{u}^{(2)} \\
& {[\vec{f}(\vec{x})]_{n}=\binom{z_{1}-z_{2}}{-z_{1}-z_{2}}}
\end{aligned}
$$

DEC $140 B$
Representation Learning Lecture $03 \mid$ Part
Matrices

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?

Matrices?

- I thought this week was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Recall: Linear Transformations

- A transformation $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- A transformation \vec{f} is linear if

$$
\vec{f}(\alpha \vec{u}+\beta \vec{v})=\alpha \vec{f}(\vec{u})+\beta \vec{f}(\vec{v})
$$

Recall: Linear Transformations
Key consequence of linearity: to compute $\vec{f}(\vec{x})$, only need to know what \vec{f} does to basis vectors.

Example:

$$
\begin{aligned}
& \vec{x}=3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} \\
& \vec{f}\left(\hat{e}^{(1)}\right)=-\hat{e}^{(1)}+3 \hat{e}^{(2)}=(-1,3)^{\top} \\
& \begin{aligned}
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)}=(2,0)^{\top} \\
\vec{f}(\vec{x}) & =\vec{f}\left(\begin{array}{l}
3
\end{array}\right)=3 f\left(\hat{e}^{(1)}\right)-4 f\left(\hat{e}^{(2)}\right)=3\binom{-1}{3}-4\binom{2}{0}
\end{aligned} \\
& =\binom{-3}{9}+\binom{-8}{0}=\binom{-111}{4}
\end{aligned}
$$

Matrices

- Idea: Since \vec{f} is defined by what it does to basis, place $\vec{f}\left(\hat{e}^{(1)}\right), \vec{f}\left(\hat{e}^{(2)}\right)$, ... into a table as columns
- This is the matrix representing ${ }^{2} \vec{f}$

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=-\hat{e}^{(1)}+3 \hat{e}^{(2)}=\binom{-1}{3} \\
& \vec{f}\left(\hat{e}^{(2)}\right)=2 \hat{e}^{(1)}=\binom{2}{0}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right)
$$

[^0]
Exercise

Write the matrix representing \vec{f} with respect to the standard basis, given:

$$
\begin{aligned}
& \vec{f}\left(\hat{e}^{(1)}\right)=(1,4,7)^{\top} \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 7 & 9
\end{array}\right) \\
& \vec{f}\left(\hat{e}^{(2)}\right)=(2,5,7)^{\top} \quad \\
& \vec{f}\left(\hat{e}^{(3)}\right)=(3,6,9)^{\top}
\end{aligned}
$$

$$
\left(\begin{array}{l}
-2 \\
-8 \\
-14
\end{array}\right)+\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+\left(\begin{array}{c}
9 \\
18 \\
27
\end{array}\right)=\left(\begin{array}{c}
9 \\
15 \\
21
\end{array}\right)
$$

Exercise
Suppose \vec{f} has the matrix below:

Let $\vec{x}=(-2,1,3)^{\top}$. What is $\vec{f}(\vec{x})$?

$$
\begin{aligned}
f(\vec{x})=f\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right) & =-2 f\left(e^{(1)}\right)+1 f\left(e^{(2)}\right)+3 f\left(e^{(3)}\right) \\
& =-2\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)+1\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+3\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-8 \\
-14
\end{array}\right)+\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+\left(\begin{array}{c}
9 \\
18 \\
27
\end{array}\right)
\end{aligned}
$$

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

$$
A B \quad f_{A}\left(f_{B}(\dot{x})\right)
$$

${ }^{f_{A}}$ What is matrix multiplication?

$$
\begin{aligned}
& \vec{f} \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{c}
9 \\
15 \\
21
\end{array}\right) \\
& (1)(-2)+(2)(1)+(3)(3)=-2+2+9=9 \\
& -14+8+27
\end{aligned}
$$

A low-level definition

$$
(A \vec{x})_{i}=\sum_{j=1}^{n} A_{i j} x_{j}
$$

A low-level interpretation

$$
\begin{aligned}
& f\left(\mathfrak{e}^{(4)}\right) \quad f\left(e^{(2 n}\right) \quad f\left(\hat{e}^{(3 n}\right)
\end{aligned}
$$

In general...

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{1} \vec{a}^{(1)}+x_{2} \vec{a}^{(2)}+x_{3} \vec{a}^{(3)}
$$

Matrix Multiplication

$$
\begin{aligned}
& \vec{x}=x_{1} \hat{e}^{(1)}+x_{2} \hat{e}^{(2)}+x_{3} \hat{e}^{(3)}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \\
& \vec{f}(\vec{x})=x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right) \\
& \begin{aligned}
A & =\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right) \\
A \vec{x} & =\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \vec{f}\left(\hat{e}^{(3)}\right) \\
\downarrow & \downarrow & \downarrow
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& =x_{1} \vec{f}\left(\hat{e}^{(1)}\right)+x_{2} \vec{f}\left(\hat{e}^{(2)}\right)+x_{3} \vec{f}\left(\hat{e}^{(3)}\right)
\end{aligned}
\end{aligned}
$$

Matrix Multiplication

- Matrix A represents a linear transformation \vec{f}
\checkmark With respect to the standard basis
- If we use a different basis, the matrix changes!
- Matrix multiplication $A \vec{x}$ evaluates $\vec{f}(\vec{x})$

What are they, really?

- Matrices are sometimes just tables of numbers.
- But they often have a deeper meaning.

Main Idea

A square ($n \times n$) matrix can be interpreted as a compact representation of a linear transformation $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

What's more, if A represents \vec{f}, then $A \vec{x}=\vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f}.

Example

$$
\begin{array}{rlrl}
\vec{x} & =3 \hat{e}^{(1)}-4 \hat{e}^{(2)}=\binom{3}{-4} & A & =\left(\begin{array}{rr}
-1 & 2 \\
3 & 0
\end{array}\right) \\
\vec{f}\left(\hat{e}^{(1)}\right) & =-\hat{e}^{(1)}+3 \hat{e}^{(2)}=\binom{-1}{3} & & A \vec{x} \\
\vec{f}\left(\hat{e}^{(2)}\right) & =2 \hat{e}^{(1)}=\binom{2}{u} & \left(\begin{array}{rr}
-1 & 2 \\
3 & 0
\end{array}\right)\binom{3}{-4} \\
\vec{f}(\vec{x}) & =\binom{-11}{9} & & =\left(\begin{array}{rr}
-3 & -8 \\
9+0
\end{array}\right)=\binom{-11}{9}
\end{array}
$$

Note

All of this works because we assumed \vec{f} is linear.

- If it isn't, evaluating \vec{f} isn't so simple.

Note

- All of this works because we assumed \vec{f} is linear.
- If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!

Matrices in Other Bases

- The matrix of a linear transformation wrt the standard basis:

$$
\left(\begin{array}{cccc}
\uparrow & \uparrow & \uparrow \\
\vec{f}\left(\hat{e}^{(1)}\right) & \vec{f}\left(\hat{e}^{(2)}\right) & \cdots & \vec{f}\left(\hat{e}^{(d)}\right) \\
\downarrow & \downarrow & \downarrow &
\end{array}\right)
$$

- With respect to basis \mathcal{U} :

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
{\left[\vec{f}\left(\hat{u}^{(1)}\right)\right]_{\mathcal{U}}} & {\left[\vec{f}\left(\hat{u}^{(2)}\right)\right]_{\mathcal{U}}} & \cdots \\
\downarrow & \downarrow & \left.\downarrow \vec{f}\left(\hat{u}^{(d)}\right)\right]_{\mathcal{U}}
\end{array}\right)
$$

Matrices in Other Bases

- Consider the transformation \vec{f} which "mirrors" a vector over the line of 45°.

$$
\begin{aligned}
& f\left(\hat{e}^{(2)}\right)=\hat{e}^{(2)} \\
& f\left(\hat{e}^{(2)}\right)=\hat{e}^{(1)}
\end{aligned}
$$

- What is its matrix in the standard basis?

Matrices in Other Bases

DST $140 B$
Representation Learning Lecture $03 \mid$ Part 3
The Spectral Theorem

Eigenvectors

Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$.

Eigenvectors (of Linear Transformations)

- Let \vec{f} be a linear transformation. An eigenvector of \vec{f} with eigenvalue λ is a nonzero vector \vec{v} such that $f(\vec{v})=\lambda \vec{v}$.

Geometric Interpretation

- When \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
- Possibly by a negative amount.

Symmetric Matrices

- Recall: a matrix A is symmetric if $A^{T}=A$.

The Spectral Theorem ${ }^{3}$

\Rightarrow Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$
A=\left(\begin{array}{cc}
5 & 5 \\
-10 & 12
\end{array}\right)
$$

Example Linear Transformation

$$
A=\left(\begin{array}{cc}
-2 & -1 \\
-5 & 3
\end{array}\right)
$$

Example Symmetric Linear Transformation

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

Example Symmetric Linear Transformation

$$
A=\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)
$$

Observation \#1

- Symmetric linear transformations have axes of symmetry.

Observation \#2

The axes of symmetry are orthogonal to one another.

Observation \#3

The action of \vec{f} along an axis of symmetry is simply to scale its input.

Observation \#4

The size of this scaling can be different for each axis.

Main Idea

The eigenvectors of a symmetric linear transformation (matrix) are its axes of symmetry. The eigenvalues describe how much each axis of symmetry is scaled.

Exercise

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvector of the transformation.

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.1 \\
-0.1 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.2 \\
-0.2 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.3 \\
-0.3 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.4 \\
-0.4 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.5 \\
-0.5 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.6 \\
-0.6 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.7 \\
-0.7 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.8 \\
-0.8 & 2
\end{array}\right)
$$

Off-diagonal elements

$$
A=\left(\begin{array}{cc}
5 & -0.9 \\
-0.9 & 2
\end{array}\right)
$$

The Spectral Theorem ${ }^{4}$

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

What about total symmetry?

Every vector is an eigenvector.

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)
$$

Computing Eigenvectors

$$
\begin{aligned}
& \text { "> } A=\text { np.array }([[2,-1],[-1,3]]) \\
& \text { "> np.linalg.eigh(A) } \\
& \text { (array([1.38196601, 3.61803399]), } \\
& \quad \operatorname{array}([[-0.85065081,-0.52573111], \\
& \quad[-0.52573111,0.85065081]]))
\end{aligned}
$$

[^0]: ${ }^{2}$ with respect to the standard basis $\hat{e}^{(1)}, \hat{e}^{(2)}$

