
Lecture 03 | Part 1

Functions of a Vector



Functions of a Vector▶ In ML, we often work with functions of a vector:𝑓 ∶ ℝ𝑑 → ℝ𝑑′.▶ Example: a prediction function, 𝐻( ⃗𝑥).▶ Functions of a vector can return:▶ a number: 𝑓 ∶ ℝ𝑑 → ℝ1▶ a vector ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑′▶ something else?



Transformations▶ A transformation ⃗𝑓 is a function that takes in a
vector, and returns a vector of the same
dimensionality.▶ That is, ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑.



Visualizing Transformations▶ A transformation is a vector field.▶ Assigns a vector to each point in space.▶ Example: ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Example▶ ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Arbitrary Transformations▶ Arbitrary transformations can be quite complex.



Arbitrary Transformations▶ Arbitrary transformations can be quite complex.



Linear Transformations▶ Luckily, we often1 work with simpler, linear
transformations.▶ A transformation 𝑓 is linear if:⃗𝑓(𝛼 ⃗𝑥 + 𝛽 ⃗𝑦) = 𝛼 ⃗𝑓( ⃗𝑥) + 𝛽 ⃗𝑓( ⃗𝑦)

1Sometimes, just to make the math tractable!

⑧imar



Checking Linearity▶ To check if a transformation is linear, use the
definition.▶ Example: ⃗𝑓( ⃗𝑥) = (𝑥2, −𝑥1)𝑇

f(xx +y) =.. .. .
=cf(y) +B(y)

x =() i =(ii)



Exercise

Let ⃗𝑓( ⃗𝑥) = (𝑥1 + 3, 𝑥2). Is ⃗𝑓 a linear transformation?
·a -e (atf()

+f)

aa +b =z(!)+3(3) =(2) +(a) =(i)
-(x +5) =(i)) =(ii)
af(a)+Bf(b) =2 f(i) +3f(3) =2(4) +3(5) =(3)



Exercise

Let ⃗𝑓( ⃗𝑥) = (𝑥1 + 3, 𝑥2). Is ⃗𝑓 a linear transformation?
==a

=(i) b =(Y)

a +b =z(!)+3(3) =(2) +(z) =(-)
I(x +B5) = -(5)) =(5)
af(a)+ f(y)2 f(i) +3f(i) =2(4) +3(i) =(5)



Implications of Linearity▶ Suppose ⃗𝑓 is a linear transformation. Then:⃗𝑓( ⃗𝑥) = ⃗𝑓(𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2))= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2))▶ I.e., ⃗𝑓 is totally determined by what it does to the
basis vectors.

x=(*-)



The Complexity of Arbitrary
Transformations▶ Suppose 𝑓 is an arbitrary transformation.▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.▶ What is ⃗𝑓( ⃗𝑥)?



The Simplicity of Linear
Transformations▶ Suppose 𝑓 is a linear transformation.▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.▶ What is ⃗𝑓( ⃗𝑥)?



Exercise▶ Suppose 𝑓 is a linear transformation.▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.▶ I tell you ⃗𝑥 = (3, −4)𝑇.▶ What is ⃗𝑓( ⃗𝑥)?

f(x) =f(x,e +

x-ex)tenders

-((2)) =3f(2) -4f(ex) f(2):2fe)-1f(2)
=3(2) -4(8)

=2(?) -1()

=(3) +(8) =(y) I =(i) +(8) =(E)



Exercise▶ Suppose 𝑓 is a linear transformation.▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.▶ I tell you ⃗𝑥 = (3, −4)𝑇.▶ What is ⃗𝑓( ⃗𝑥)?
x =(xi) f(x) =x,(i)

+x(3)
=(2! - x2)



Key Fact▶ Linear functions are determined entirely by what
they do on the basis vectors.▶ I.e., to tell you what 𝑓 does, I only need to tell
you ⃗𝑓( ̂𝑒(1)) and ⃗𝑓( ̂𝑒(2)).▶ This makes the math easy!





Example Linear Transformation▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 3𝑥2, −3𝑥1 + 5𝑥2)𝑇



Another Example Linear
Transformation▶ ⃗𝑓( ⃗𝑥) = (2𝑥1 − 𝑥2, −𝑥1 + 3𝑥2)𝑇



Note▶ Because of linearity, along any given direction ⃗𝑓
changes only in scale.⃗𝑓(𝜆�̂�) = 𝜆 ⃗𝑓(�̂�) f(x)

+(2x) =2f(x)

*



-



Linear Transformations and Bases▶ We have been writing transformations in
coordinate form. For example:⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇▶ To do so, we assumed the standard basis.▶ If we use a different basis, the formula for ⃗𝑓
changes.



Example▶ Suppose that in the standard basis, ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇.▶ Let �̂�(1) = 1√2 (1, 1)𝑇 and �̂�(2) = 1√2 (−1, 1)𝑇.▶ Write [ ⃗𝑥]U = (𝑧1, 𝑧2)𝑇.▶ What is [ ⃗𝑓( ⃗𝑥)]U in terms of 𝑧1 and 𝑧2?
***
i

2 8

->x =z,Y +z,4

I(x) =x+
I() =F((i) =f(!) = (8):E
f(u) =((i)) =re f (i) =v(=2):



Example▶ Suppose that in the standard basis, ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇.▶ Let �̂�(1) = 1√2 (1, 1)𝑇 and �̂�(2) = 1√2 (−1, 1)𝑇.▶ Write [ ⃗𝑥]U = (𝑧1, 𝑧2)𝑇.▶ What is [ ⃗𝑓( ⃗𝑥)]U in terms of 𝑧1 and 𝑧2?
I(m) =re (8) [S("lu=(Eci?wii)
Flu")." =V(i).t(i) =12 =1

f(u). = (8)(i) =272 -- 1
I")]u =(-1) I(u) =l-



Example▶ Suppose that in the standard basis, ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇.▶ Let �̂�(1) = 1√2 (1, 1)𝑇 and �̂�(2) = 1√2 (−1, 1)𝑇.▶ Write [ ⃗𝑥]U = (𝑧1, 𝑧2)𝑇.▶ What is [ ⃗𝑓( ⃗𝑥)]U in terms of 𝑧1 and 𝑧2?
If("In F(um) =I (re(i)) =(i)=iele,
I(u). =(2) (!) ==-z=-1
I(Y). =I (2). (i) =E-2=-1
If(*"]n =(i) -> f(um)--n-



Example▶ Suppose that in the standard basis, ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇.▶ Let �̂�(1) = 1√2 (1, 1)𝑇 and �̂�(2) = 1√2 (−1, 1)𝑇.▶ Write [ ⃗𝑥]U = (𝑧1, 𝑧2)𝑇.▶ What is [ ⃗𝑓( ⃗𝑥)]U in terms of 𝑧1 and 𝑧2?
I(u) =Yc -4

a(2)=>(Y) ---u

* =z,+z,Y

f(x) =zf(u) +zf(Y)
=z,TY-]+Ze[-Y-]
=(z, - zz) +(- z, - zz)

((x)]n =(=:E)
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Matrices



Matrices?▶ I thought this week was supposed to be about
linear algebra... Where are the matrices?

▶ What is a matrix, anyways?



Matrices?▶ I thought this week was supposed to be about
linear algebra... Where are the matrices?▶ What is a matrix, anyways?



What is a matrix?

(1 2 34 5 67 8 9)



Recall: Linear Transformations▶ A transformation ⃗𝑓( ⃗𝑥) is a function which takes a
vector as input and returns a vector of the same
dimensionality.▶ A transformation ⃗𝑓 is linear if⃗𝑓(𝛼�⃗� + 𝛽 ⃗𝑣) = 𝛼 ⃗𝑓(�⃗�) + 𝛽 ⃗𝑓( ⃗𝑣)



Recall: Linear Transformations▶ Key consequence of linearity: to compute ⃗𝑓( ⃗𝑥),
only need to know what ⃗𝑓 does to basis vectors.▶ Example:⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)⃗𝑓( ⃗𝑥) = =(- 1,3)4
=(2,0)T

f(x) =3f(x) -4f(2) =3(3)
-4(2)

=() +(8) =(a,



Matrices▶ Idea: Since ⃗𝑓 is defined by what it does to basis,
place ⃗𝑓( ̂𝑒(1)), ⃗𝑓( ̂𝑒(2)), … into a table as columns▶ This is the matrix representing2 ⃗𝑓
⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2) = (−13 )⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1) = (20) (−1 23 0)

2with respect to the standard basis ̂𝑒(1), ̂𝑒(2)



Exercise

Write the matrix representing ⃗𝑓 with respect to the
standard basis, given:⃗𝑓( ̂𝑒(1)) = (1, 4, 7)𝑇⃗𝑓( ̂𝑒(2)) = (2, 5, 7)𝑇⃗𝑓( ̂𝑒(3)) = (3, 6, 9)𝑇 (1)



Exercise

Suppose ⃗𝑓 has the matrix below:(1 2 34 5 67 8 9)
Let ⃗𝑥 = (−2, 1, 3)𝑇. What is ⃗𝑓( ⃗𝑥)?

(i) +(-)+(7) =(2)

fle") f(*)

f(e

f(x) =f() =-2f(e) +1 -)(e) +3f(e)
= -z(I) +()+3() =(=y) +(-)+(7)



Main Idea
A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation𝑓 ∶ ℝ𝑛 → ℝ𝑛.



What is matrix multiplication?

(1 2 34 5 67 8 9) (−213 ) = ( )
A +z(f(x))
↑4
fA fis

I x* = f(x)
15
27

(i)(-z) +(z)(i) +(3)(3)
=
- 2 +2 +9 =9

- 14 +8 +27



A low-level definition

(𝐴 ⃗𝑥)𝑖 = 𝑛∑𝑗=1 𝐴𝑖𝑗𝑥𝑗



A low-level interpretation

(1 2 34 5 67 8 9) (−213 ) = −2 (147) + 1 (258) + 3 (369)Y fless flesh) flee

x I



In general...

( ↑ ↑ ↑�⃗�(1) �⃗�(2) �⃗�(3)↓ ↓ ↓ ) (𝑥1𝑥2𝑥3) = 𝑥1�⃗�(1) + 𝑥2�⃗�(2) + 𝑥3�⃗�(3)



Matrix Multiplication

⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + 𝑥3 ̂𝑒(3) = (𝑥1, 𝑥2, 𝑥3)𝑇⃗𝑓( ⃗𝑥) = 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))
𝐴 = ( ↑ ↑ ↑⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))↓ ↓ ↓ )
𝐴 ⃗𝑥 = ( ↑ ↑ ↑⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))↓ ↓ ↓ ) (𝑥1𝑥2𝑥3)= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))



Matrix Multiplication▶ Matrix 𝐴 represents a linear transformation ⃗𝑓▶ With respect to the standard basis▶ If we use a different basis, the matrix changes!▶ Matrix multiplication 𝐴 ⃗𝑥 evaluates ⃗𝑓( ⃗𝑥)

(xx)
"

x5



What are they, really?▶ Matrices are sometimes just tables of numbers.▶ But they often have a deeper meaning.



Main Idea
A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation⃗𝑓 ∶ ℝ𝑛 → ℝ𝑛.
What’s more, if 𝐴 represents ⃗𝑓, then 𝐴 ⃗𝑥 = ⃗𝑓( ⃗𝑥); that
is, multiplying by 𝐴 is the same as evaluating ⃗𝑓.



Example

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)⃗𝑓( ⃗𝑥) =
𝐴 =
𝐴 ⃗𝑥 =I's)=(zj(s) (i)(t)()
=(ii) =(-)



Note▶ All of this works because we assumed ⃗𝑓 is linear.▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!



Note▶ All of this works because we assumed ⃗𝑓 is linear.▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.▶ Linear algebra = simple!



Matrices in Other Bases▶ The matrix of a linear transformation wrt the
standard basis:( ↑ ↑ ↑⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⋯ ⃗𝑓( ̂𝑒(𝑑))↓ ↓ ↓ )

▶ With respect to basis U :( ↑ ↑ ↑[ ⃗𝑓(�̂�(1))]U [ ⃗𝑓(�̂�(2))]U ⋯ [ ⃗𝑓(�̂�(𝑑))]U↓ ↓ ↓ )



Matrices in Other Bases▶ Consider the transformation ⃗𝑓 which “mirrors” a
vector over the line of 45∘.

▶ What is its matrix in the
standard basis?

en f(x) =e

fle f(es) =e

-
(ii)



Matrices in Other Bases

▶ Let �̂�(1) = 1√2 (1, 1)𝑇▶ Let �̂�(2) = 1√2 (−1, 1)𝑇▶ What is [ ⃗𝑓(�̂�(1))]U?▶ [ ⃗𝑓(�̂�(2))]U?▶ What is the matrix?

f(u") =Y"
a(2)

f(x) = - u

Sa
If (n)((0)
If(um)]n= (i) (0-5)
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The Spectral Theorem



Eigenvectors▶ Let 𝐴 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐴 with
eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such that𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.



Eigenvectors (of Linear
Transformations)▶ Let ⃗𝑓 be a linear transformation. An eigenvector

of ⃗𝑓 with eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such
that 𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.



Geometric Interpretation▶ When ⃗𝑓 is applied to one of its eigenvectors, ⃗𝑓
simply scales it.▶ Possibly by a negative amount.



Symmetric Matrices▶ Recall: a matrix 𝐴 is symmetric if 𝐴𝑇 = 𝐴.



The Spectral Theorem3▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exist 𝑛 eigenvectors of 𝐴 which are all
mutually orthogonal.

3for symmetric matrices



What?▶ What does the spectral theorem mean?▶ What is an eigenvector, really?▶ Why are they useful?



Example Linear Transformation

𝐴 = ( 5 5−10 12)



Example Linear Transformation

𝐴 = (−2 −1−5 3 )



Example Symmetric Linear
Transformation

𝐴 = ( 2 −1−1 3 )



Example Symmetric Linear
Transformation

𝐴 = (5 00 2)



Observation #1

▶ Symmetric linear
transformations have
axes of symmetry.



Observation #2

▶ The axes of symmetry
are orthogonal to one
another.



Observation #3

▶ The action of ⃗𝑓 along
an axis of symmetry is
simply to scale its
input.



Observation #4

▶ The size of this
scaling can be
different for each axis.



Main Idea
The eigenvectors of a symmetric linear transfor-
mation (matrix) are its axes of symmetry. The
eigenvalues describe how much each axis of sym-
metry is scaled.



Exercise
Consider the linear transformation which mirrors
its input over the line of 45∘. Give two orthogonal
eigenvector of the transformation.



Off-diagonal elements

𝐴 = ( 5 −0.1−0.1 2 )



Off-diagonal elements

𝐴 = ( 5 −0.2−0.2 2 )



Off-diagonal elements

𝐴 = ( 5 −0.3−0.3 2 )



Off-diagonal elements

𝐴 = ( 5 −0.4−0.4 2 )



Off-diagonal elements

𝐴 = ( 5 −0.5−0.5 2 )



Off-diagonal elements

𝐴 = ( 5 −0.6−0.6 2 )



Off-diagonal elements

𝐴 = ( 5 −0.7−0.7 2 )



Off-diagonal elements

𝐴 = ( 5 −0.8−0.8 2 )



Off-diagonal elements

𝐴 = ( 5 −0.9−0.9 2 )



The Spectral Theorem4

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛
symmetric matrix. Then
there exist 𝑛 eigenvectors
of 𝐴 which are all mutually
orthogonal.

4for symmetric matrices



What about total symmetry?

▶ Every vector is an
eigenvector.𝐴 = (3 00 3)



Computing Eigenvectors

»> A = np.array([[2, -1], [-1, 3]])
»> np.linalg.eigh(A)
(array([1.38196601, 3.61803399]),
array([[-0.85065081, -0.52573111],

[-0.52573111, 0.85065081]]))


