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Functions of a Vector

▶ In ML, we often work with functions of a vector:
𝑓 ∶ ℝ𝑑 → ℝ𝑑′.

▶ Example: a prediction function, 𝐻( ⃗𝑥).

▶ Functions of a vector can return:
▶ a number: 𝑓 ∶ ℝ𝑑 → ℝ1

▶ a vector ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑′

▶ something else?



Transformations

▶ A transformation ⃗𝑓 is a function that takes in a
vector, and returns a vector of the same
dimensionality.

▶ That is, ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑.



Visualizing Transformations

▶ A transformation is a vector field.
▶ Assigns a vector to each point in space.
▶ Example: ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Example

▶ ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Linear Transformations

▶ Luckily, we often1 work with simpler, linear
transformations.

▶ A transformation 𝑓 is linear if:

⃗𝑓(𝛼 ⃗𝑥 + 𝛽 ⃗𝑦) = 𝛼 ⃗𝑓( ⃗𝑥) + 𝛽 ⃗𝑓( ⃗𝑦)

1Sometimes, just to make the math tractable!



Checking Linearity

▶ To check if a transformation is linear, use the
definition.

▶ Example: ⃗𝑓( ⃗𝑥) = (𝑥2, −𝑥1)𝑇



Exercise

Let ⃗𝑓( ⃗𝑥) = (𝑥1 + 3, 𝑥2). Is ⃗𝑓 a linear transformation?



Implications of Linearity

▶ Suppose ⃗𝑓 is a linear transformation. Then:

⃗𝑓( ⃗𝑥) = ⃗𝑓(𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2))
= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2))

▶ I.e., ⃗𝑓 is totally determined by what it does to the
basis vectors.



The Complexity of Arbitrary
Transformations

▶ Suppose 𝑓 is an arbitrary transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.

▶ What is ⃗𝑓( ⃗𝑥)?



The Simplicity of Linear
Transformations

▶ Suppose 𝑓 is a linear transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.

▶ What is ⃗𝑓( ⃗𝑥)?



Exercise

▶ Suppose 𝑓 is a linear transformation.
▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.
▶ I tell you ⃗𝑥 = (3, −4)𝑇.
▶ What is ⃗𝑓( ⃗𝑥)?



Key Fact

▶ Linear functions are determined entirely by what
they do on the basis vectors.

▶ I.e., to tell you what 𝑓 does, I only need to tell
you ⃗𝑓( ̂𝑒(1)) and ⃗𝑓( ̂𝑒(2)).

▶ This makes the math easy!





Example Linear Transformation

▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 3𝑥2, −3𝑥1 + 5𝑥2)𝑇



Another Example Linear
Transformation

▶ ⃗𝑓( ⃗𝑥) = (2𝑥1 − 𝑥2, −𝑥1 + 3𝑥2)𝑇



Note
▶ Because of linearity, along any given direction ⃗𝑓
changes only in scale.

⃗𝑓(𝜆�̂�) = 𝜆 ⃗𝑓(�̂�)





Linear Transformations and Bases

▶ We have been writing transformations in
coordinate form. For example:

⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇

▶ To do so, we assumed the standard basis.

▶ If we use a different basis, the formula for ⃗𝑓
changes.



Example

▶ Suppose that in the standard basis, ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇.
▶ Let �̂�(1) = 1

√2
(1, 1)𝑇 and �̂�(2) = 1

√2
(−1, 1)𝑇.

▶ Write [ ⃗𝑥]U = (𝑧1, 𝑧2)𝑇.
▶ What is [ ⃗𝑓( ⃗𝑥)]U in terms of 𝑧1 and 𝑧2?
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Matrices?

▶ I thought this week was supposed to be about
linear algebra... Where are the matrices?

▶ What is a matrix, anyways?
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What is a matrix?

(
1 2 3
4 5 6
7 8 9

)



Recall: Linear Transformations

▶ A transformation ⃗𝑓( ⃗𝑥) is a function which takes a
vector as input and returns a vector of the same
dimensionality.

▶ A transformation ⃗𝑓 is linear if

⃗𝑓(𝛼�⃗� + 𝛽 ⃗𝑣) = 𝛼 ⃗𝑓(�⃗�) + 𝛽 ⃗𝑓( ⃗𝑣)



Recall: Linear Transformations

▶ Key consequence of linearity: to compute ⃗𝑓( ⃗𝑥),
only need to know what ⃗𝑓 does to basis vectors.

▶ Example:

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)

⃗𝑓( ⃗𝑥) =



Matrices

▶ Idea: Since ⃗𝑓 is defined by what it does to basis,
place ⃗𝑓( ̂𝑒(1)), ⃗𝑓( ̂𝑒(2)), … into a table as columns

▶ This is the matrix representing2 ⃗𝑓

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2) = (−13 )

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1) = (20)
(−1 2
3 0)

2with respect to the standard basis ̂𝑒(1), ̂𝑒(2)



Exercise

Write the matrix representing ⃗𝑓 with respect to the
standard basis, given:

⃗𝑓( ̂𝑒(1)) = (1, 4, 7)𝑇

⃗𝑓( ̂𝑒(2)) = (2, 5, 7)𝑇

⃗𝑓( ̂𝑒(3)) = (3, 6, 9)𝑇



Exercise

Suppose ⃗𝑓 has the matrix below:

(
1 2 3
4 5 6
7 8 9

)

Let ⃗𝑥 = (−2, 1, 3)𝑇. What is ⃗𝑓( ⃗𝑥)?



Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
𝑓 ∶ ℝ𝑛 → ℝ𝑛.



What is matrix multiplication?

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = ( )



A low-level definition

(𝐴 ⃗𝑥)𝑖 =
𝑛

∑
𝑗=1
𝐴𝑖𝑗𝑥𝑗



A low-level interpretation

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = −2 (

1
4
7
) + 1 (

2
5
8
) + 3 (

3
6
9
)



In general...

(
↑ ↑ ↑
�⃗�(1) �⃗�(2) �⃗�(3)
↓ ↓ ↓

) (
𝑥1
𝑥2
𝑥3
) = 𝑥1�⃗�(1) + 𝑥2�⃗�(2) + 𝑥3�⃗�(3)



Matrix Multiplication

⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + 𝑥3 ̂𝑒(3) = (𝑥1, 𝑥2, 𝑥3)𝑇

⃗𝑓( ⃗𝑥) = 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))

𝐴 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

)

𝐴 ⃗𝑥 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

) (
𝑥1
𝑥2
𝑥3
)

= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))



Matrix Multiplication

▶ Matrix 𝐴 represents a linear transformation ⃗𝑓
▶ With respect to the standard basis
▶ If we use a different basis, the matrix changes!

▶ Matrix multiplication 𝐴 ⃗𝑥 evaluates ⃗𝑓( ⃗𝑥)



What are they, really?

▶ Matrices are sometimes just tables of numbers.

▶ But they often have a deeper meaning.



Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
⃗𝑓 ∶ ℝ𝑛 → ℝ𝑛.

What’s more, if 𝐴 represents ⃗𝑓, then 𝐴 ⃗𝑥 = ⃗𝑓( ⃗𝑥); that
is, multiplying by 𝐴 is the same as evaluating ⃗𝑓.



Example

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)

⃗𝑓( ⃗𝑥) =

𝐴 =

𝐴 ⃗𝑥 =



Note

▶ All of this works because we assumed ⃗𝑓 is linear.

▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!



Note

▶ All of this works because we assumed ⃗𝑓 is linear.

▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!



Matrices in Other Bases
▶ The matrix of a linear transformation wrt the
standard basis:

(
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⋯ ⃗𝑓( ̂𝑒(𝑑))
↓ ↓ ↓

)

▶ With respect to basis U :

(
↑ ↑ ↑

[ ⃗𝑓(�̂�(1))]U [ ⃗𝑓(�̂�(2))]U ⋯ [ ⃗𝑓(�̂�(𝑑))]U
↓ ↓ ↓

)



Matrices in Other Bases

▶ Consider the transformation ⃗𝑓 which “mirrors” a
vector over the line of 45∘.

▶ What is its matrix in the
standard basis?



Matrices in Other Bases

▶ Let �̂�(1) = 1
√2
(1, 1)𝑇

▶ Let �̂�(2) = 1
√2
(−1, 1)𝑇

▶ What is [ ⃗𝑓(�̂�(1))]U?
▶ [ ⃗𝑓(�̂�(2))]U?
▶ What is the matrix?
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Eigenvectors

▶ Let 𝐴 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐴 with
eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such that
𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.



Eigenvectors (of Linear
Transformations)

▶ Let ⃗𝑓 be a linear transformation. An eigenvector
of ⃗𝑓 with eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such
that 𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.



Importance

▶ We will see why eigenvectors are important in
the next part.

▶ For now: what are they?



Geometric Interpretation

▶ When ⃗𝑓 is applied to one of its eigenvectors, ⃗𝑓
simply scales it.
▶ Possibly by a negative amount.



Exercise

Draw as many (linearly independent) eigenvectors
as you can:

𝐴 = (5 0
0 2)



Finding Eigenvectors

▶ We typically compute the eigenvectors of a
matrix with a computer.

▶ But it can help our understanding to find them
“graphically”.



Procedure

Given a matrix 𝐴 (or transformation ⃗𝑓), to find an
eigenvector “graphically”.
1. Think about (or draw) the output of ⃗𝑓 for a
handful of unit vector inputs.
▶ Linear transformations are continuous so you can
“interpolate”.

2. Find place(s) where the input vector and the
output vector are parallel.



Exercise

Draw as many (linearly independent) eigenvectors
as you can:

𝐴 = ( 2 −1
−1 3 )



Exercise

Consider the linear transformation which mirrors
its input over the line of 45∘. Give two orthogonal
eigenvectors of the transformation.



Alternate Procedure: Guess and
Check

1. Guess a vector ⃗𝑥.

2. Check that ⃗𝑓( ⃗𝑥) = 𝜆 ⃗𝑥.



Exercise

Draw as many (linearly independent) eigenvectors
as you can:

𝐴 = ( 5 5
−10 12)



Caution!

▶ Not all matrices have even one eigenvector!3

▶ When does a matrix have multiple (linearly
independent) eigenvectors?

3That is, with a real-valued eigenvalue.



Symmetric Matrices

▶ Recall: a matrix 𝐴 is symmetric if 𝐴𝑇 = 𝐴.



The Spectral Theorem4

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exist 𝑛 eigenvectors of 𝐴 which are all
mutually orthogonal.

4for symmetric matrices



What?

▶ What does the spectral theorem mean?

▶ What is an eigenvector, really?

▶ Why are they useful?



Example Linear Transformation

𝐴 = ( 5 5
−10 12)



Example Linear Transformation

𝐴 = (−2 −1
−5 3 )



Example Symmetric Linear
Transformation

𝐴 = ( 2 −1
−1 3 )



Observation #1

▶ Symmetric linear
transformations have
axes of symmetry.



Observation #2

▶ The axes of symmetry
are orthogonal to one
another.



Observation #3

▶ The action of ⃗𝑓 along
an axis of symmetry is
simply to scale its
input.



Observation #4

▶ The size of this
scaling can be
different for each axis.



Main Idea

The eigenvectors of a symmetric linear transfor-
mation (matrix) are its axes of symmetry. The
eigenvalues describe how much each axis of sym-
metry is scaled.



Diagonal Matrices

▶ If 𝐴 is diagonal, its eigenvectors are simply the
standard basis vectors.

𝐴 = (2 0
0 5)



Off-diagonal elements

𝐴 = ( 2 −0.1
−0.1 5 )



Off-diagonal elements

𝐴 = ( 2 −0.2
−0.2 5 )



Off-diagonal elements

𝐴 = ( 2 −0.3
−0.3 5 )



Off-diagonal elements

𝐴 = ( 2 −0.4
−0.4 5 )



Off-diagonal elements

𝐴 = ( 2 −0.5
−0.5 5 )



Off-diagonal elements

𝐴 = ( 2 −0.6
−0.6 5 )



Off-diagonal elements

𝐴 = ( 2 −0.7
−0.7 5 )



Off-diagonal elements

𝐴 = ( 2 −0.8
−0.8 5 )



Off-diagonal elements

𝐴 = ( 2 −0.9
−0.9 5 )



Non-Diagonal Symmetric Matrices

▶ When a symmetric matrix is not diagonal, its
eigenvectors are not the standard basis vectors.

▶ But they can be used to form an orthonormal
basis!



The Spectral Theorem5

▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛
symmetric matrix. Then
there exist 𝑛 eigenvectors
of 𝐴 which are all mutually
orthogonal.

5for symmetric matrices



What about total symmetry?

▶ Every vector is an
eigenvector.

𝐴 = (3 0
0 3)



Computing Eigenvectors

»> A = np.array([[2, -1], [-1, 3]])
»> np.linalg.eigh(A)
(array([1.38196601, 3.61803399]),
array([[-0.85065081, -0.52573111],

[-0.52573111, 0.85065081]]))


