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Change of Basis Matrices



Changing Basis▶ Suppose ⃗𝑥 = (𝑎1𝑎2) = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2).▶ �̂�(1) and �̂�(2) form a new, orthonormal basis U .▶ What is [ ⃗𝑥]U?▶ That is, what are 𝑏1 and 𝑏2 in ⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2).



Exercise
Find the coordinates of ⃗𝑥 in the new basis:�̂�(1) = (√3/2, 1/2)𝑇�̂�(2) = (−1/2, √3/2)𝑇⃗𝑥 = (1/2, 1)𝑇
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Change of Basis▶ Suppose �̂�(1) and �̂�(2) are our new, orthonormal
basis vectors.▶ We know ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2)▶ We want to write ⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2)▶ Solution 𝑏1 = ⃗𝑥 ⋅ �̂�(1) 𝑏2 = ⃗𝑥 ⋅ �̂�(2)



Change of Basis Matrix▶ Changing basis is a linear transformation⃗𝑓( ⃗𝑥) = ( ⃗𝑥 ⋅ �̂�(1))�̂�(1) + ( ⃗𝑥 ⋅ �̂�(2))�̂�(2) = ( ⃗𝑥 ⋅ �̂�(1)⃗𝑥 ⋅ �̂�(2))
U▶ We can represent it with a matrix( ↑ ↑𝑓( ̂𝑒(1)) 𝑓( ̂𝑒(2))↓ ↓ )
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Example

�̂�(1) = (√3/2, 1/2)𝑇�̂�(2) = (−1/2, √3/2)𝑇𝑓( ̂𝑒(1)) =𝑓( ̂𝑒(2)) =𝐴 =
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Observation▶ The new basis vectors become the rows of the
matrix.



Example▶ Multiplying by this matrix gives the coordinate
vector w.r.t. the new basis.

�̂�(1) = (√3/2, 1/2)𝑇�̂�(2) = (−1/2, √3/2)𝑇𝐴 = (√3/2 1/2−1/2 √3/2)⃗𝑥 = (1/2, 1)𝑇
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Change of Basis Matrix▶ Let �̂�(1), … , �̂�(𝑑) form an orthonormal basis U .▶ The matrix 𝑈 whose rows are the new basis
vectors is the change of basis matrix from the
standard basis to U :

𝑈 = (← �̂�(1) →← �̂�(2) →⋮← �̂�(𝑑) →)



Change of Basis Matrix▶ If 𝑈 is the change of basis matrix, [ ⃗𝑥]U = 𝑈 ⃗𝑥▶ To go back to the standard basis, use 𝑈𝑇:⃗𝑥 = 𝑈𝑇[ ⃗𝑥]U



Exercise
Let 𝑈 be the change of basis matrix for U .
What is 𝑈𝑇𝑈?
Hint: What is 𝑈𝑇(𝑈 ⃗𝑥)?
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Diagonalization



Matrices of a Transformation▶ Let ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑 be a linear transformation▶ The matrix representing ⃗𝑓 wrt the standard basis
is: 𝐴 = ( ↑ ↑ ↑ ↑⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⋯ ⃗𝑓( ̂𝑒(𝑑))↓ ↓ ↓ ↓ )⑧ is



Matrices of a Transformation▶ If we use a different basis U = {�̂�(1), … , �̂�(𝑑)}, the
matrix representing ⃗𝑓 is:𝐴U = ( ↑ ↑ ↑ ↑[ ⃗𝑓(�̂�(1))]U [ ⃗𝑓(�̂�(2))]U ⋯ [ ⃗𝑓(�̂�(𝑑))]U↓ ↓ ↓ ↓ )

▶ If ⃗𝑦 = 𝐴 ⃗𝑥, then [ ⃗𝑦]U = 𝐴U [ ⃗𝑥]U



Diagonal Matrices▶ Diagonal matrices are very nice / easy to work
with.▶ Suppose 𝐴 is a matrix. Is there a basis U where𝐴U is diagonal?▶ Yes! If 𝐴 is symmetric.



The Spectral Theorem1▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exist 𝑛 eigenvectors of 𝐴 which are all
mutually orthogonal.

1for symmetric matrices



Eigendecomposition▶ If 𝐴 is a symmetric matrix, we can pick 𝑑 of its
eigenvectors �̂�(1), … , �̂�(𝑑) to form an orthonormal
basis.▶ Any vector ⃗𝑥 can be written in terms of this
eigenbasis.▶ This is called its eigendecomposition:⃗𝑥 = 𝑏1�̂�(1) + 𝑏2�̂�(2) + … + 𝑏𝑑�̂�(𝑑)



Matrix in the Eigenbasis▶ Claim: the matrix of a linear transformation ⃗𝑓,
written in a basis of its eigenvectors, is a
diagonal matrix.▶ The entries along the diagonal will be the
eigenvalues.



Why?

𝐴U = ( ↑ ↑ ↑ ↑[ ⃗𝑓(�̂�(1))]U [ ⃗𝑓(�̂�(2))]U ⋯ [ ⃗𝑓(�̂�(𝑑))]U↓ ↓ ↓ ↓ )
▶ ⃗𝑓(�̂�(1)) = 𝜆1�̂�(1), so [ ⃗𝑓(�̂�(1))]U = (𝜆1, 0, … , 0)𝑇.▶ ⃗𝑓(�̂�(2)) = 𝜆2�̂�(2), so [ ⃗𝑓(�̂�(2))]U = (0, 𝜆2, … , 0)𝑇.▶ …

D,+--.
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Matrix Multiplication▶ We have seen that matrix multiplication
evaluates a linear transformation.▶ In the standard basis:⃗𝑓( ⃗𝑥) = 𝐴 ⃗𝑥▶ In another basis:[ ⃗𝑓( ⃗𝑥)]U = 𝐴U [ ⃗𝑥]U



Diagonalization▶ Another way to compute ⃗𝑓(𝑥), starting with ⃗𝑥 in
the standard basis:
1. Change basis to the eigenbasis with 𝑈.
2. Apply ⃗𝑓 in the eigenbasis with the diagonal𝐴U .
3. Go back to the standard basis with 𝑈𝑇.▶ That is, 𝐴 ⃗𝑥 = 𝑈𝑇𝐴U𝑈 ⃗𝑥. It follows that 𝐴 = 𝑈𝑇𝐴U𝑈.
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Spectral Theorem (Again)▶ Theorem: Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix.
Then there exists an orthogonal matrix 𝑈 and a
diagonal matrix Λ such that 𝐴 = 𝑈𝑇Λ𝑈.▶ The rows of 𝑈 are the eigenvectors of 𝐴, and the
entries of Λ are its eigenvalues.▶ 𝑈 is said to diagonalize 𝐴.
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Dimensionality Reduction



High Dimensional Data▶ Data is often high dimensional (many features)▶ Example: Netflix user▶ Number of movies watched▶ Number of movies saved▶ Total time watched▶ Number of logins▶ Days since signup▶ Average rating for comedy▶ Average rating for drama▶ ⋮



High Dimensional Data▶ More features can give us more information▶ But it can also cause problems▶ Today: how do we reduce dimensionality without
losing too much information?



More Features, More Problems▶ Difficulties with high dimensional data:
1. Requires more compute time / space
2. Hard to visualize / explore
3. The “curse of dimensionality”: it’s harder to learn



Experiment▶ On this data, low 80%
train/test accuracy▶ Add 400 features of pure
noise, re-train▶ Now: 100% train accuracy,
58% test accuracy▶ Overfitting!

x
=(X,Xz, x3, x4,

. . . , Xyz)

I



Task: Dimensionality Reduction▶ We’d often like to reduce the dimensionality to
improve performance, or to visualize.▶ We will typically lose information▶ Want to minimize the loss of useful information



Redundancy▶ Two (or more) features may share the same
information.▶ Intuition: we may not need all of them.



Today▶ Today we’ll think about reducing dimensionality
from ℝ𝑑 to ℝ1▶ Next time we’ll go from ℝ𝑑 to ℝ𝑑′, with 𝑑′ ≤ 𝑑



Today’s Example▶ Let’s say we represent a phone with two features:▶ 𝑥1: screen width▶ 𝑥2: phone weight▶ Both measure a phone’s “size”.▶ Instead of representing a phone with both 𝑥1 and𝑥2, can we just use a single number, 𝑧?▶ Reduce dimensionality from 2 to 1.



First Approach: Remove Features▶ Screen width and weight share information.▶ Idea: keep one feature, remove the other.▶ That is, set new feature 𝑧 = 𝑥1 (or 𝑧 = 𝑥2).



Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)1 for
each phone, 𝑖.▶ Observe: 𝑧(4) > 𝑧(5).▶ Is phone 4 really “larger”
than phone 5?

weight
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width



Removing Features

▶ Say we set 𝑧(𝑖) = ⃗𝑥(𝑖)2 for
each phone, 𝑖.▶ Observe: 𝑧(3) > 𝑧(4).▶ Is phone 3 really “larger”
than phone 4?
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Better Approach: Mixtures of
Features▶ Idea: 𝑧 should be a combination of 𝑥1 and 𝑥2.▶ One approach: linear combination.𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2= �⃗� ⋅ ⃗𝑥▶ 𝑢1, … , 𝑢2 are the mixture coefficients; we can

choose them.

i =(n,,4z)

y =(X,,Xz)



Normalization▶ Mixture coefficients generalize proportions.▶ We could assume, e.g., |𝑢1| + |𝑢2| = 1.▶ But it makes the math easier if we assume𝑢21 + 𝑢22 = 1.▶ Equivalently, if �⃗� = (𝑢1, 𝑢2)𝑇, assume ‖�⃗�‖ = 1

1000 x, +2000
x2

IX, + 2x2
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Geometric Interpretation

▶ 𝑧 measures how much of ⃗𝑥
is in the direction of �⃗�▶ If �⃗� = (1, 0)𝑇, then 𝑧 = 𝑥1▶ If �⃗� = (0, 1)𝑇, then 𝑧 = 𝑥2

z =x.u =11x1)(4) cas O
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Choosing �⃗�▶ Suppose we have only two features:▶ 𝑥1: screen size▶ 𝑥2: phone thickness▶ We’ll create single new feature, 𝑧, from 𝑥1 and 𝑥2.▶ Assume 𝑧 = 𝑢1𝑥1 + 𝑢2𝑥2 = ⃗𝑥 ⋅ �⃗�▶ Interpretation: 𝑧 is a measure of a phone’s size▶ How should we choose �⃗� = (𝑢1, 𝑢2)𝑇?



Example

▶ �⃗� defines a direction▶ ⃗𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� measures
position of ⃗𝑥 along this
direction

i =(1,0)

I
inth



Example

▶ �⃗� defines a direction▶ ⃗𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗� measures
position of ⃗𝑥 along this
direction
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Example

▶ Phone “size” varies most
along a diagonal direction.▶ Along direction of “max
variance”, phones are
well-separated.▶ Idea: �⃗� should point in
direction of “max
variance”.
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Example

▶ Phone “size” varies most
along a diagonal direction.▶ Along direction of “max
variance”, phones are
well-separated.▶ Idea: �⃗� should point in
direction of “max
variance”.
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Our Algorithm (Informally)▶ Given: data points ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑▶ Pick �⃗� to be the direction of “max variance”▶ Create a new feature, 𝑧, for each point:𝑧(𝑖) = ⃗𝑥(𝑖) ⋅ �⃗�



PCA▶ This algorithm is called Principal Component
Analysis, or PCA.▶ The direction of maximum variance is called the
principal component.



Exercise
Suppose the direction of maximum variance in a
data set is �⃗� = (1/√2, −1/√2)𝑇
Let▶ ⃗𝑥(1) = (3, −2)𝑇▶ ⃗𝑥(2) = (1, 4)𝑇
What are 𝑧(1) and 𝑧(2)?



Problem▶ How do we compute the “direction of maximum
variance”?
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Covariance Matrices



Variance▶ We know how to compute the variance of a set of
numbers 𝑋 = {𝑥(1), … , 𝑥(𝑛)}:Var(𝑋) = 1𝑛 𝑛∑𝑖=1 (𝑥(𝑖) − 𝜇)2▶ The variance measures the “spread” of the data



Generalizing Variance▶ If we have two features, 𝑥1 and 𝑥2, we can
compute the variance of each as usual:Var(𝑥1) = 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖)1 − 𝜇1)2Var(𝑥2) = 1𝑛 𝑛∑𝑖=1 ( ⃗𝑥(𝑖)2 − 𝜇2)2▶ Can also measure how 𝑥1 and 𝑥2 vary together.



Measuring Similar Information▶ Features which share information if they vary
together.▶ A.k.a., they “co-vary”▶ Positive association: when one is above average,
so is the other▶ Negative association: when one is above
average, the other is below average



Examples▶ Positive: temperature and ice cream cones sold.▶ Positive: temperature and shark attacks.▶ Negative: temperature and coats sold.



Centering▶ First, it will be useful to center the data.



Centering▶ Compute the mean of each feature:𝜇𝑗 = 1𝑛 𝑛∑1 ⃗𝑥(𝑖)𝑗▶ Define new centered data:

⃗𝑧(𝑖) = ( ⃗𝑥(𝑖)1 − 𝜇1⃗𝑥(𝑖)2 − 𝜇2⋮⃗𝑥(𝑖)𝑑 − 𝜇𝑑)



Centering (Equivalently)▶ Compute the mean of all data points:𝜇 = 1𝑛 𝑛∑1 ⃗𝑥(𝑖)▶ Define new centered data:⃗𝑧(𝑖) = ⃗𝑥(𝑖) − 𝜇



Exercise
Center the data set:⃗𝑥(1) = (1, 2, 3)𝑇⃗𝑥(2) = (−1, −1, 0)𝑇⃗𝑥(3) = (0, 2, 3)𝑇



Quantifying Co-Variance▶ One approach is as follows2.Cov(𝑥𝑖, 𝑥𝑗) = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗▶ For each data point, multiply the value of feature 𝑖
and feature 𝑗, then average these products.▶ This is the covariance of features 𝑖 and 𝑗.

2Assuming centered data



Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17 7∑𝑖=1 ⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2
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Quantifying Covariance

▶ Assume the data are
centered.

Covariance = 17 7∑𝑖=1 ⃗𝑥(𝑖)1 × ⃗𝑥(𝑖)2



Quantifying Covariance▶ The covariance quantifies extent to which two
variables vary together.▶ Assume we have centered the data.▶ The sample covariance of feature 𝑖 and 𝑗 is:𝜎𝑖𝑗 = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Exercise
True or False: 𝜎𝑖𝑗 = 𝜎𝑗𝑖?𝜎𝑖𝑗 = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Covariance Matrices▶ Given data ⃗𝑥(1), … , ⃗𝑥(𝑛) ∈ ℝ𝑑.▶ The sample covariance matrix 𝐶 is the 𝑑 × 𝑑
matrix whose 𝑖𝑗 entry is defined to be 𝜎𝑖𝑗.𝜎𝑖𝑗 = 1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗



Observations▶ Diagonal entries of 𝐶 are the variances.▶ The matrix is symmetric!



Note▶ Sometimes you’ll see the sample covariance defined as:𝜎𝑖𝑗 = 1𝑛 − 1 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗
Note the 1/(𝑛 − 1)▶ This is an unbiased estimator of the population covariance.▶ Our definition is the maximum likelihood estimator.▶ In practice, it doesn’t matter: 1/(𝑛 − 1) ≈ 1/𝑛.▶ For consistency, in this class use 1/𝑛.



Computing Covariance▶ There is a “trick” for computing sample
covariance matrices.▶ Step 1: make 𝑛 × 𝑑 data matrix, 𝑋▶ Step 2: make 𝑍 by centering columns of 𝑋▶ Step 3: 𝐶 = 1𝑛𝑍𝑇𝑍



Computing Covariance (in code)3

»> mu = X.mean(axis=0)
»> Z = X - mu
»> C = 1 / len(X) * Z.T @ Z

3Or use np.cov
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Visualizing Covariance Matrices



Visualizing Covariance Matrices▶ Covariance matrices are symmetric.▶ They have axes of symmetry (eigenvectors and
eigenvalues).▶ What are they?



Visualizing Covariance Matrices

𝐶 ≈ ( )



Visualizing Covariance Matrices

Eigenvectors:�⃗�(1) ≈�⃗�(2) ≈



Visualizing Covariance Matrices
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Visualizing Covariance Matrices

Eigenvectors:�⃗�(1) ≈�⃗�(2) ≈



Visualizing Covariance Matrices

𝐶 ≈ ( )



Visualizing Covariance Matrices

Eigenvectors:�⃗�(1) ≈�⃗�(2) ≈



Intuitions▶ The eigenvectors of the covariance matrix
describe the data’s “principal directions”▶ 𝐶 tells us something about data’s shape.▶ The top eigenvector points in the direction of
“maximum variance”.▶ The top eigenvalue is proportional to the
variance in this direction.



Caution▶ The data doesn’t always look like this.▶ We can always compute covariance matrices.▶ They just may not describe the data’s shape very well.



Caution▶ The data doesn’t always look like this.▶ We can always compute covariance matrices.▶ They just may not describe the data’s shape very well.



Caution▶ The data doesn’t always look like this.▶ We can always compute covariance matrices.▶ They just may not describe the data’s shape very well.



Caution▶ The data doesn’t always look like this.▶ We can always compute covariance matrices.▶ They just may not describe the data’s shape very well.


