
Lecture 08 | Part 1

Interpreting PCA

Three Interpretations

▶ What is PCA doing?

▶ Three interpretations:
1. Mazimizing variance
2. Finding the best reconstruction
3. Decorrelation

Recall: Matrix Formulation

▶ Given data matrix 𝑋.

▶ Compute new data matrix 𝑍 = 𝑋𝑈.

▶ PCA: choose 𝑈 to be matrix of eigenvectors of 𝐶.

▶ For now: suppose 𝑈 can be anything – but
columns should be orthonormal
▶ Orthonormal = “not redundant”

View #1: Maximizing Variance

▶ This was the view we used to derive PCA

▶ Define the total variance to be the sum of the
variances of each column of 𝑍.

▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶
maximizes the total variance among all choices
of orthonormal 𝑈.

Main Idea

PCA maximizes the total variance of the new data.
I.e., chooses the most “interesting” new features
which are not redundant.

View #2: Minimizing Reconstruction
Error

▶ Recall: total reconstruction error
𝑛

∑
𝑖=1
‖ ⃗𝑥(𝑖) − 𝑈 ⃗𝑧(𝑖)‖2

▶ Goal: minimize total reconstruction error.

▶ Claim: Choosing 𝑈 to be top eigenvectors of 𝐶 minimizes
reconstruction error among all choices of orthonormal 𝑈

Main Idea

PCA minimizes the reconstruction error. It is the
“best” projection of points onto a linear subspace
of dimensionality 𝑘. When 𝑘 = 𝑑, the reconstruc-
tion error is zero.

View #3: Decorrelation

▶ PCA has the effect of “decorrelating” the features.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

6

4

2

0

2

4

6

x 2

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
z1

6

4

2

0

2

4

6

z 2

Main Idea

PCA learns a new representation by rotating the
data into a basis where the features are uncorre-
lated (not redundant). That is: the natural basis

vectors are the principal directions (eigenvectors
of the covariance matrix). PCA changes the basis
to this natural basis.

Lecture 08 | Part 2

PCA in Practice

PCA in Practice

▶ PCA is often used in preprocessing before
classifier is trained, etc.

▶ Must choose number of dimensions, 𝑘.

▶ One way: cross-validation.

▶ Another way: the elbow method.

Total Variance

▶ The total variance is the sum of the eigenvalues
of the covariance matrix.

▶ Or, alternatively, sum of variances in each
orthogonal basis direction.

Caution

▶ PCA’s assumption: variance is interesting

▶ PCA is totally unsupervised

▶ The direction most meaningful for classification
may not have large variance!

Lecture 08 | Part 3

Nonlinear Dimensionality Reduction

Scenario

▶ You want to train a
classifier on this data.

▶ It would be easier if we
could “unroll” the spiral.

▶ Data seems to be
one-dimensional, even
though in two dimensions.

▶ Dimensionality reduction?

PCA?

▶ Does PCA work here?

▶ Try projecting onto one principal component.

No

PCA?

▶ PCA simply “rotates” the data.

▶ No amount of rotation will “unroll” the spiral.

▶ We need a fundamentally different approach
that works for non-linear patterns.

Today

▶ Non-linear dimensionality reduction via
spectral embeddings.

Rethinking Dimensionality

▶ Each point is an (𝑥, 𝑦)
coordinate in two
dimensional space

▶ But the structure is
one-dimensional

▶ Could (roughly) locate
point using one number:
distance from end.

Rethinking Dimensionality

Rethinking Dimensionality

Rethinking Dimensionality

▶ Informally: data expressed with 𝑑 dimensions,
but its really confined to 𝑘-dimensional region

▶ This region is called a manifold

▶ 𝑑 is the ambient dimension

▶ 𝑘 is the intrinsic dimension

Example

▶ Ambient dimension: 2

▶ Intrinsic dimension: 1

Example

▶ Ambient dimension: 3

▶ Intrinsic dimension: 2

Example

▶ Ambient dimension:

▶ Intrinsic dimension:

Manifold Learning

▶ Given: data in high dimensions

▶ Recover: the low-dimensional manifold

Types of Manifolds

▶ Manifolds can be linear
▶ E.g., linear subpaces – hyperplanes
▶ Learned by PCA

▶ Can also be non-linear (locally linear)
▶ Example: the spiral data
▶ Learned by Laplacian eigenmaps, among others

Euclidean vs. Geodesic Distances
▶ Euclidean distance: the “straight-line” distance
▶ Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances
▶ Euclidean distance: the “straight-line” distance
▶ Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

▶ If data is close to a linear manifold, geodesic ≈
Euclidean

▶ Otherwise, can be very different

Non-Linear Dimensionality
Reduction

▶ Goal: Map points in ℝ𝑑 to ℝ𝑘

▶ Such that: if ⃗𝑥 and ⃗𝑦 are close in geodesic
distance in ℝ𝑑, they are close in Euclidean
distance in ℝ𝑘

Embeddings

Lecture 08 | Part 4

Embedding Similarities

Similar Netflix Users

▶ Suppose you are a data scientist at Netflix

▶ You’re given an 𝑛 × 𝑛 similarity matrix 𝑊 of users
▶ entry (𝑖, 𝑗) tells you how similar user 𝑖 and user 𝑗 are
▶ 1 means “very similar”, 0 means “not at all”

▶ Goal: visualize to find patterns

Idea

▶ We like scatter plots. Can we make one?

▶ Users are not vectors / points!

▶ They are nodes in a similarity graph

Similarity Graphs
▶ Similarity matrices can be thought of as weighted graphs,
and vice versa.

Goal
▶ Embed nodes of a similarity graph as points.
▶ Similar nodes should map to nearby points.

Today

▶ We will design a graph embedding approach:
▶ Spectral embeddings via Laplacian eigenmaps

More Formally

▶ Given:
▶ A similarity graph with 𝑛 nodes
▶ a number of dimensions, 𝑘

▶ Compute: an embedding of the 𝑛 points into ℝ𝑘
so that similar objects are placed nearby

To Start

▶ Given:
▶ A similarity graph with 𝑛 nodes

▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

Vectors as Embeddings into ℝ1

▶ Suppose we have 𝑛 nodes (objects) to embed

▶ Assume they are numbered 1, 2, ..., 𝑛

▶ Let 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ be the embeddings

▶ We can pack them all into a vector: ⃗𝑓.

▶ Goal: find a good set of embeddings, ⃗𝑓.

Example

⃗𝑓 = (1, 3, 2, −4)𝑇

An Optimization Problem

▶ We’ll turn it into an optimization problem:

▶ Step 1: Design a cost function quantifying how
good a particular embedding ⃗𝑓 is

▶ Step 2: Minimize the cost

Example

▶ Which is the best embedding?

Cost Function for Embeddings

▶ Idea: cost is low if similar points are close

▶ Here is one approach:

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ where 𝑤𝑖𝑗 is the weight between 𝑖 and 𝑗.

Interpreting the Cost

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

▶ If 𝑤𝑖𝑗 ≈ 0, that pair can be placed very far apart
without increasing cost

▶ If 𝑤𝑖𝑗 ≈ 1, the pair should be placed close
together in order to have small cost.

Exercise

Do you see a problem with the cost function?

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what embedding ⃗𝑓 minimizes it?

Problem

▶ The cost is always minimized by taking ⃗𝑓 = 0.

▶ This is a “trivial” solution. Not useful.

▶ Fix: require ‖ ⃗𝑓‖ = 1
▶ Really, any number would work. 1 is convenient.

Exercise

Do you see another problemwith the cost function,
even if we require ⃗𝑓 to be a unit vector?

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

Hint: what other choice of ⃗𝑓 will always make this
zero?

Problem

▶ The cost is always minimized by taking
⃗𝑓 = 1

√𝑛
(1, 1, … , 1)𝑇.

▶ This is a “trivial” solution. Again, not useful.

▶ Fix: require ⃗𝑓 to be orthogonal to (1, 1, … , 1)𝑇.
▶ Written: ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
▶ Ensures that solution is not close to trivial solution
▶ Might seem strange, but it will work!

The New Optimization Problem

▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊

▶ Compute: embedding vector ⃗𝑓 minimizing

Cost(⃗𝑓) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2

subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

How?

▶ This looks difficult.

▶ Let’s write it in matrix form.

▶ We’ll see that it is actually (hopefully) familiar.

