
Lecture 09 | Part 1

Embedding Similarities

Similar Netflix Users▶ Suppose you are a data scientist at Netflix▶ You’re given an 𝑛 × 𝑛 similarity matrix 𝑊 of users▶ entry (𝑖, 𝑗) tells you how similar user 𝑖 and user 𝑗 are▶ 1 means “very similar”, 0 means “not at all”▶ Goal: visualize to find patterns

Idea▶ We like scatter plots. Can we make one?▶ Users are not vectors / points!▶ They are nodes in a similarity graph

Similarity Graphs▶ Similarity matrices can be thought of as weighted graphs,
and vice versa.

Goal▶ Embed nodes of a similarity graph as points.▶ Similar nodes should map to nearby points.

Today▶ We will design a graph embedding approach:▶ Spectral embeddings via Laplacian eigenmaps

More Formally▶ Given:▶ A similarity graph with 𝑛 nodes▶ a number of dimensions, 𝑘▶ Compute: an embedding of the 𝑛 points into ℝ𝑘
so that similar objects are placed nearby

To Start▶ Given:▶ A similarity graph with 𝑛 nodes▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby

Vectors as Embeddings into ℝ1▶ Suppose we have 𝑛 nodes (objects) to embed▶ Assume they are numbered 1, 2, ..., 𝑛▶ Let 𝑓1, 𝑓2, … , 𝑓𝑛 ∈ ℝ be the embeddings▶ We can pack them all into a vector: ⃗𝑓.▶ Goal: find a good set of embeddings, ⃗𝑓.

Example⃗𝑓 = (1, 3, 2, −4)𝑇M

fe fi fi fz
<I
-4 -3--d i c's 4

An Optimization Problem▶ We’ll turn it into an optimization problem:▶ Step 1: Design a cost function quantifying how
good a particular embedding ⃗𝑓 is▶ Step 2: Minimize the cost

Example▶ Which is the best embedding?

A

B

.

Cost Function for Embeddings▶ Idea: cost is low if similar points are close▶ Here is one approach:Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2▶ where 𝑤𝑖𝑗 is the weight between 𝑖 and 𝑗.

Interpreting the CostCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2▶ If 𝑤𝑖𝑗 ≈ 0, that pair can be placed very far apart
without increasing cost▶ If 𝑤𝑖𝑗 ≈ 1, the pair should be placed close
together in order to have small cost.

Exercise
Do you see a problem with the cost function?Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
Hint: what embedding ⃗𝑓 minimizes it?min

↳

Problem▶ The cost is always minimized by taking ⃗𝑓 = 0.▶ This is a “trivial” solution. Not useful.▶ Fix: require ‖ ⃗𝑓‖ = 1▶ Really, any number would work. 1 is convenient.

oI6,0,0,

Exercise
Do you see another problemwith the cost function,
even if we require ⃗𝑓 to be a unit vector?Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
Hint: what other choice of ⃗𝑓 will always make this
zero?

fil

Problem▶ The cost is always minimized by taking⃗𝑓 = 1√𝑛(1, 1, … , 1)𝑇.▶ This is a “trivial” solution. Again, not useful.▶ Fix: require ⃗𝑓 to be orthogonal to (1, 1, … , 1)𝑇.▶ Written: ⃗𝑓 ⟂ (1, 1, … , 1)𝑇▶ Ensures that solution is not close to trivial solution▶ Might seem strange, but it will work!

D.pi

The New Optimization Problem▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇
-

How?▶ This looks difficult.▶ Let’s write it in matrix form.▶ We’ll see that it is actually (hopefully) familiar.

Lecture 09 | Part 2

The Graph Laplacian

The Problem▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇▶ Now: write the cost function as a matrix
expression.

The Degree Matrix▶ Recall: in an unweighted graph, the degree of
node 𝑖 equals number of neighbors.▶ Equivalently (where 𝐴 is the adjacency matrix):degree(𝑖) = 𝑛∑𝑗=1 𝐴𝑖𝑗▶ Since 𝐴𝑖𝑗 = 1 only if 𝑗 is a neighbor of 𝑖

ad

The Degree Matrix▶ In a weighted graph, define degree of node 𝑖
similarly: degree(𝑖) = 𝑛∑𝑗=1 𝑤𝑖𝑗▶ That is, it is the total weight of all neighbors.

o deg(x)
=3+2 +5 =10

of

The Degree Matrix▶ The degree matrix 𝐷 of a weighted graph is the
diagonal matrix where entry (𝑖, 𝑖) is given by:𝑑𝑖𝑖 = degree(𝑖)= 𝑛∑𝑗=1 𝑤𝑖𝑗der"as)

The Graph Laplacian▶ Define 𝐿 = 𝐷 − 𝑊▶ 𝐷 is the degree matrix▶ 𝑊 is the similarity matrix (weighted adjacency)▶ 𝐿 is called the Graph Laplacian matrix.▶ It is a very useful object

Very Important Fact▶ Claim: Cost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 = 12 ⃗𝑓𝑇𝐿 ⃗𝑓
▶ Proof: expand both sides

L:D-W
X

Proof

Lecture 09 | Part 3

Solving the Optimization Problem

A New Formulation▶ Given: an 𝑛 × 𝑛 similarity matrix 𝑊▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 12 ⃗𝑓𝑇𝐿 ⃗𝑓
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇▶ This might sound familiar...

Recall: PCA▶ Given: a 𝑑 × 𝑑 covariance matrix 𝐶▶ Find: vector �⃗� maximizing the variance in the
direction of �⃗�: �⃗�𝑇𝐶�⃗�
subject to ‖�⃗�‖ = 1.▶ Solution: take �⃗� = top eigenvector of 𝐶

A New Formulation▶ Forget about orthogonality constraint for now.▶ Compute: embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 12 ⃗𝑓𝑇𝐿 ⃗𝑓
subject to ‖ ⃗𝑓‖ = 1.▶ Solution: the bottom eigenvector of 𝐿.▶ That is, eigenvector with smallest eigenvalue.

↑ is symmetrigger.

Claim▶ The bottom eigenvector is ⃗𝑓 = 1√𝑛(1, 1, … , 1)𝑇▶ It has associated eigenvalue of 0.▶ That is, 𝐿 ⃗𝑓 = 0 ⃗𝑓 = 0⃗

Spectral1 Theorem

Theorem
If 𝐴 is a symmetric matrix, eigenvectors of 𝐴 with
distinct eigenvalues are orthogonal to one another.

1“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”

The Fix▶ Remember: we wanted ⃗𝑓 to be orthogonal to1√𝑛(1, 1, … , 1)𝑇.▶ i.e., should be orthogonal to bottom eigenvector of 𝐿.▶ Fix: take ⃗𝑓 to the be eigenvector of 𝐿 with with
smallest eigenvalue ≠ 0.▶ Will be ⟂ 1√𝑛(1, 1, … , 1)𝑇 by the spectral theorem.

Spectral Embeddings: Problem▶ Given: similarity graph with 𝑛 nodes▶ Compute: an embedding of the 𝑛 points into ℝ1
so that similar objects are placed nearby▶ Formally: find embedding vector ⃗𝑓 minimizingCost(⃗𝑓) = 𝑛∑𝑖=1 𝑛∑𝑗=1 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)2 = 12 ⃗𝑓𝑇𝐿 ⃗𝑓
subject to ‖ ⃗𝑓‖ = 1 and ⃗𝑓 ⟂ (1, 1, … , 1)𝑇

Spectral Embeddings: Solution▶ Form the graph Laplacian matrix, 𝐿 = 𝐷 − 𝑊▶ Choose ⃗𝑓 be an eigenvector of 𝐿 with smallest
eigenvalue > 0▶ This is the embedding!

Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

f = vecs[:,1]

Example
I = (.,...)*

-
· a

-

Embedding into ℝ𝑘▶ This embeds nodes into ℝ1.▶ What about embedding into ℝ𝑘?▶ Natural extension: find bottom 𝑘 eigenvectors
with eigenvalues > 0

New Coordinates▶ With 𝑘 eigenvectors ⃗𝑓 (1), ⃗𝑓 (2), … , ⃗𝑓 (𝑘), each node is
mapped to a point in ℝ𝑘.▶ Consider node 𝑖.▶ First new coordinate is ⃗𝑓 (1)𝑖 .▶ Second new coordinate is ⃗𝑓 (2)𝑖 .▶ Third new coordinate is ⃗𝑓 (3)𝑖 .▶ ⋮

noore

Example
W = np.array([

[1, 0.1, 0.2],
[0.1, 1, 0.7],
[0.2, 0.7, 1]

])

D = np.diag(W.sum(axis=1))
L = D - W

vals, vecs = np.linalg.eigh(L)

take two eigenvectors
to map to R^2
f = vecs[:,1:3]

Example

f(z)

jas

Laplacian Eigenmaps▶ This approach is part of the method of
“Laplacian eigenmaps”▶ Introduced by Mikhail Belkin2 and Partha Niyogi▶ It is a type of spectral embedding

2Now at HDSI

A Practical Issue▶ The Laplacian is often normalized:𝐿norm = 𝐷−1/2𝐿𝐷−1/2
where 𝐷−1/2 is the diagonal matrix whose 𝑖th
diagonal entry is 1/√𝑑𝑖𝑖.▶ Proceed by finding the eigenvectors of 𝐿norm.

In Summary▶ We can embed a similarity graph’s nodes into ℝ𝑘
using the eigenvectors of the graph Laplacian▶ Yet another instance where eigenvectors are
solution to optimization problem▶ Next time: using this for dimensionality
reduction

Lecture 09 | Part 4

Nonlinear Dimensionality Reduction

Scenario▶ You want to train a
classifier on this data.▶ It would be easier if we
could “unroll” the spiral.▶ Data seems to be
one-dimensional, even
though in two dimensions.▶ Dimensionality reduction?

PCA?▶ Does PCA work here?▶ Try projecting onto one principal component.

No

PCA?▶ PCA simply “rotates” the data.▶ No amount of rotation will “unroll” the spiral.▶ We need a fundamentally different approach
that works for non-linear patterns.

Today▶ Non-linear dimensionality reduction via
spectral embeddings.

Last Time: Spectral Embeddings▶ Given: a similarity graph with 𝑛 nodes, number
of dimensions 𝑘.▶ Embed: each node as a point in ℝ𝑘 such that
similar nodes are mapped to nearby points▶ Solution: bottom 𝑘 non-constant eigenvectors of
graph Laplacian

Idea

▶ Build a similarity graph
from points.▶ Points near the spiral
should be similar.▶ Embed the similarity
graph into ℝ1 -

Today▶ 1) How do we build a graph from a set of points?▶ 2) Dimensionality reduction with Laplacian
eigenmaps

Lecture 09 | Part 5

From Points to Graphs

Dimensionality Reduction▶ Given: 𝑛 points in ℝ𝑑, number of dimensions𝑘 ≤ 𝑑▶ Map: each point ⃗𝑥 to new representation ⃗𝑧 ∈ ℝ𝑘

Idea▶ Build a similarity graph from points in ℝ2▶ Use approach from last lecture to embed into ℝ𝑘▶ But how do we represent a set of points as a
similarity graph?

Why graphs?

Three Approaches▶ 1) Epsilon neighbors graph▶ 2) 𝑘-Nearest neighbor graph▶ 3) fully connected graph with similarity function

Epsilon Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝜀▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between nodes 𝑖
and 𝑗 if ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑗)‖ ≤ 𝜀▶ Result: unweighted graph

Exercise
What will the graph look like when 𝜀 is small? What
about when it is large?

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Note▶ We’ve drawn these graphs by placing nodes at
the same position as the point they represent▶ But a graph’s nodes can be drawn in any way

Epsilon Neighbors: Pseudocode
assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):

for j in range(n):
if distance(X[i], X[j]) <= epsilon:

adj[i, j] = 1

#((n,n))

Picking 𝜀▶ If 𝜀 is too small, graph is underconnected▶ If 𝜀 is too large, graph is overconnected▶ If you cannot visualize, just try and see

With scikit-learn
import sklearn.neighbors
adj = sklearn.neighbors.radius_neighbors_graph(

X,
radius=...

)

k-Neighbors Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝑘▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between each
node 𝑖 and its 𝑘 closest
neighbors▶ Result: unweighted graph

k-Neighbors: Pseudocode
assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):

for j in k_closest_neighbors(X, i):
adj[i, j] = 1

->((n,n))

Exercise
Is it possible for a 𝑘-neighbors graph to be dis-
conected?

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

With scikit-learn
import sklearn.neighbors
adj = sklearn.neighbors.kneighbors_graph(

X,
n_neighbors=...

)

Fully Connected Graph▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a similarity function ℎ▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)▶ Add edge between every
pair of nodes. Assign
weight of ℎ(⃗𝑥(𝑖), ⃗𝑥(𝑗))▶ Result: weighted graph

O

-

I

Gaussian Similarity▶ A common similarity function: Gaussian▶ Must choose 𝜎 appropriatelyℎ(⃗𝑥, ⃗𝑦) = 𝑒−‖ ⃗𝑥− ⃗𝑦‖2/𝜎2
Elea

Fully Connected: Pseudocode
def h(x, y):

dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma**2)

assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):

for j in range(n):
w[i, j] = h(X[i], X[j])

-, signa

-> ans((n,n))

sigma)

With SciPy
distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

