DST $140 B$ Representation Learning Lecture $09 \mid$ Part 1
Embedding Similarities

Similar Netflix Users

- Suppose you are a data scientist at Netflix
- You're given an $n \times n$ similarity matrix W of users
$>$ entry (i, j) tells you how similar user i and user j are
> 1 means "very similar", 0 means "not at all"
- Goal: visualize to find patterns

Idea

- We like scatter plots. Can we make one?
- Users are not vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

$$
\begin{array}{ccc}
A \\
B \\
C
\end{array}\left(\begin{array}{ccc}
A & B & C \\
1 & 0.1 & 0.2 \\
0.1 & 1 & 0.7 \\
0.2 & 0.7 & 1
\end{array}\right)
$$

Goal

- Embed nodes of a similarity graph as points.
- Similar nodes should map to nearby points.

Today

- We will design a graph embedding approach:
- Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
- A similarity graph with n nodes
- a number of dimensions, k
- Compute: an embedding of the n points into \mathbb{R}^{k} so that similar objects are placed nearby

To Start

- Given:
- A similarity graph with n nodes

Compute: an embedding of the n points into \mathbb{R}^{1} so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^{1}

- Suppose we have n nodes (objects) to embed
\Rightarrow Assume they are numbered $1,2, \ldots, n$
\Rightarrow Let $f_{1}, f_{2}, \ldots, f_{n} \in \mathbb{R}$ be the embeddings
We can pack them all into a vector: \vec{f}.
$>$ Goal: find a good set of embeddings, \vec{f}.

Example

$$
\vec{f}=(1,3,0,-4)^{T}
$$

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- Step 2: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

- Idea: cost is low if similar points are close
- Here is one approach:

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

> where $w_{i j}$ is the weight between i and j.

Interpreting the Cost

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

- If $w_{i j} \approx 0$, that pair can be placed very far apart without increasing cost
\Rightarrow If $w_{i j} \approx 1$, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

$$
\min \operatorname{cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Hint: what embedding \vec{f} minimizes it?

$0,0,0$,

Problem

- The cost is always minimized by taking $\vec{f}=0$.
- This is a "trivial" solution. Not useful.
- Fix: require $\|\vec{f}\|=1$
- Really, any number would work. 1 is convenient.

Exercise

Do you see another problem with the cost function, even if we require \vec{f} to be a unit vector?

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Hint: what other choice of \vec{f} will always make this zero?

- Problem

0

- The cost is always minimized by taking $\vec{f}=\frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{T}$.
- This is a "trivial" solution. Again, not useful.
\Rightarrow Fix: require \vec{f} to be orthogonal to $(1,1, \ldots, 1)^{T}$.
- Written: $\vec{f} \perp(1,1, \ldots, 1)^{\top}$
- Ensures that solution is not close to trivial solution
- Might seem strange, but it will work!

The New Optimization Problem

- Given: an $n \times n$ similarity matrix W
- Compute: embedding vector \vec{f} minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

How?

- This looks difficult.
- Let's write it in matrix form.
- We'll see that it is actually (hopefully) familiar.

DST $140 B$
Representation Learning Lecture $09 \mid$ Part 2
The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

- Now: write the cost function as a matrix expression.

The Degree Matrix

- Recall: in an unweighted graph, the degree of node i equals number of neighbors.
- Equivalently (where A is the adjacency matrix):

$$
\text { degree }(i)=\sum_{j=1}^{n} A_{i j}
$$

- Since $A_{i j}=1$ only if j is a neighbor of i

$$
\operatorname{deg}(u)=3+2+5=10
$$

The Degree Matrix
In a weighted graph, define degree of node i similarly:

$$
\operatorname{degree}(i)=\sum_{j=1}^{n} w_{i j}
$$

That is, it is the total weight of all neighbors.

The Degree Matrix

- The degree matrix D of a weighted graph is the diagonal matrix where entry (i, i) is given by:

$$
\begin{aligned}
d_{i i} & =\operatorname{degree}(i) \\
& =\sum_{j=1}^{n} w_{i j}
\end{aligned}
$$

The Graph Laplacian

- Define $L=D-W$
$\Rightarrow D$ is the degree matrix
- W is the similarity matrix (weighted adjacency)
- L is called the Graph Laplacian matrix.
- It is a very useful object

Very Important Fact

Claim:

$$
\operatorname{cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \vec{f}^{\top} L \vec{f}
$$

- Proof: expand both sides

Proof

DEC $140 B$ Representation Learning Lecture 09 Part 3
Solving the Optimization Problem

A New Formulation

- Given: an $n \times n$ similarity matrix W
- Compute: embedding vector \vec{f} minimizing

$$
\operatorname{Cost}(\vec{f})=\frac{1}{2} \vec{f}^{\top} L \vec{f}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{T}$

- This might sound familiar...

Recall: PCA

- Given: ad $\times d$ covariance matrix C
- Find: vector \vec{u} maximizing the variance in the direction of \vec{u} :

$$
\vec{u}^{\top} c \vec{u}
$$

subject to $\|\vec{u}\|=1$.

- Solution: take $\vec{u}=$ top eigenvector of C

A New Formulation

- Forget about orthogonality constraint for now.
- Compute: embedding vector \vec{f} minimizing

$$
\begin{equation*}
\operatorname{Cost}(\vec{f})=\frac{1}{2} \vec{f}^{\top} L \vec{f} \tag{15}
\end{equation*}
$$

subject to $\|\vec{f}\|=1$.

- Solution: the bottom eigenvector of L.
$>$ That is, eigenvector with smallest eigenvalue.

Claim

- The bottom eigenvector is $\vec{f}=\frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{T}$
- It has associated eigenvalue of 0 .
- That is, $L \vec{f}=0 \vec{f}=\overrightarrow{0}$

Spectral ${ }^{1}$ Theorem

Theorem

If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

[^0]
The Fix

- Remember: we wanted \vec{f} to be orthogonal to $\frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{\top}$.
- i.e., should be orthogonal to bottom eigenvector of L.
- Fix: take \vec{f} to the be eigenvector of L with with smallest eigenvalue $\neq 0$.
- Will be $\perp \frac{1}{\sqrt{n}}(1,1, \ldots, 1)^{\top}$ by the spectral theorem.

Spectral Embeddings: Problem

- Given: similarity graph with n nodes
- Compute: an embedding of the n points into \mathbb{R}^{1} so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

$$
\operatorname{Cost}(\vec{f})=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=\frac{1}{2} \vec{f}^{\top} L \vec{f}
$$

subject to $\|\vec{f}\|=1$ and $\vec{f} \perp(1,1, \ldots, 1)^{\top}$

Spectral Embeddings: Solution

- Form the graph Laplacian matrix, $L=D-W$
- Choose \vec{f} be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Example

Example

Embedding into \mathbb{R}^{k}

- This embeds nodes into \mathbb{R}^{1}.
- What about embedding into \mathbb{R}^{k} ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

- With k eigenvectors $\vec{f}^{(1)}, \vec{f}^{(2)}, \ldots, \vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^{k}.
- Consider node i.
- First new coordinate is $\vec{f}_{i}^{(1)}$.
- Second new coordinate is $\vec{f}_{i}^{(2)}$.
- Third new coordinate is $\vec{f}_{i}^{(3)}$.
-

Example

Example

Laplacian Eigenmaps

- This approach is part of the method of "Laplacian eigenmaps"
- Introduced by Mikhail Belkin² and Partha Niyogi
- It is a type of spectral embedding

A Practical Issue

- The Laplacian is often normalized:

$$
L_{\text {norm }}=D^{-1 / 2} L D^{-1 / 2}
$$

where $D^{-1 / 2}$ is the diagonal matrix whose ith diagonal entry is $1 / \sqrt{d_{i j}}$.

- Proceed by finding the eigenvectors of $L_{\text {norm }}$.

In Summary

- We can embed a similarity graph's nodes into \mathbb{R}^{k} using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction

DEC $140 B$ Representation Learning Lecture 09 | Part 4
Nonlinear Dimensionality Reduction

Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?

PCA?

Does PCA work here?

- Try projecting onto one principal component.

No

PCA?

- PCA simply "rotates" the data.
- No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.

Today

Non-linear dimensionality reduction via spectral embeddings.

Last Time: Spectral Embeddings

- Given: a similarity graph with n nodes, number of dimensions k.
- Embed: each node as a point in \mathbb{R}^{k} such that similar nodes are mapped to nearby points
- Solution: bottom k non-constant eigenvectors of graph Laplacian

Idea

- Build a similarity graph from points.
- Points near the spiral should be similar.
- Embed the similarity graph into \mathbb{R}^{1}

Today

1) How do we build a graph from a set of points?
2) Dimensionality reduction with Laplacian eigenmaps

DST $140 B$
Representation Learning Lecture $09 \mid$ Part 5
From Points to Graphs

Dimensionality Reduction

- Given: n points in \mathbb{R}^{d}, number of dimensions $k \leq d$

Map: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^{k}$

Idea

- Build a similarity graph from points in \mathbb{R}^{2}
- Use approach from last lecture to embed into \mathbb{R}^{k}
- But how do we represent a set of points as a similarity graph?

Why graphs?

Three Approaches

- 1) Epsilon neighbors graph
> 2) k-Nearest neighbor graph
- 3) fully connected graph with similarity function

Epsilon Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a number ε
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between nodes i and j if $\left\|\vec{x}^{(i)}-\vec{x}^{(j)}\right\| \leq \varepsilon$
- Result: unweighted graph

Exercise

What will the graph look like when ε is small? What about when it is large?

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Epsilon Neighbors Graph

Note

- We've drawn these graphs by placing nodes at the same position as the point they represent
- But a graph's nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros)
for i in range(n):
    for j in range(n):
    if distance(X[i], X[j]) <= epsilon:
        adj[i, j] = 1
```


Picking ε

- If ε is too small, graph is underconnected
- If ε is too large, graph is overconnected
- If you cannot visualize, just try and see

With scikit-learn

import sklearn.neighbors
adj = sklearn.neighbors.radius_neighbors_graph(X, radius=...
)

k-Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a number k
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

k-Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_I_Ne(*)((n,n))
for i in range(n):
    for j in k_closest_neighbors(X, i):
    adj[i, j] = 1
```


Exercise

Is it possible for a k-neighbors graph to be disconected?

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

With scikit-learn

import sklearn.neighbors
adj = sklearn.neighbors.kneighbors_graph(X,
n_neighbors=...
)

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$, a similarity function h
- Create a graph with one node i per point $\vec{x}^{(i)}$
- Add edge between every pair of nodes. Assign weight of $h\left(\vec{x}^{(i)}, \vec{x}^{(j)}\right)$

- Result: weighted graph

Gaussian Similarity

- A common similarity function: Gaussian
- Must choose σ appropriately

Fully Connected: Pseudocode

```
2\longrightarrow,sizma
def h(x, y):
    dist = np.linalg.norm(x, y)
    return np.exp(-dist**2 / sigma**2)
# assume the data is in X
n = len(x)
w = np.oses) Ores (( }n,n)
for i in range(n):
    for j in range(n):
        w[i, j] = h(X[i], X[j]{ sigma)
```


With SciPy

distances = scipy.spatial.distance_matrix(X, X) w = np.exp(-distances**2 / sigma**2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

[^0]: ${ }^{1 " S p e c t r a l " ~ n o t ~ i n ~ t h e ~ s e n s e ~ o f ~ s p e c t e r s ~(g h o s t s), ~ b u t ~ b e c a u s e ~ t h e ~}$ eigenvalues of a transformation form the "spectrum"

