Representation Learning

Lecture 09 | Part 1

Embedding Similarities

Similar Netflix Users

Suppose you are a data scientist at Netflix

- You're given an n × n similarity matrix W of users
 entry (i, j) tells you how similar user i and user j are
 1 means "very similar", 0 means "not at all"
- ► Goal: visualize to find patterns

Idea

- We like scatter plots. Can we make one?
- Users are **not** vectors / points!
- They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.

Goal

Embed nodes of a similarity graph as points.
 Similar nodes should map to nearby points.

Today

We will design a graph embedding approach:
 Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
 - A similarity graph with n nodes
 - a number of dimensions, k
- Compute: an embedding of the n points into R^k so that similar objects are placed nearby

To Start

Given:

A similarity graph with n nodes

Compute: an embedding of the n points into R¹ so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^1

- Suppose we have n nodes (objects) to embed
- Assume they are numbered 1, 2, ..., n
- ▶ Let $f_1, f_2, ..., f_n \in \mathbb{R}$ be the embeddings
- We can pack them all into a vector: \vec{f} .
- Goal: find a good set of embeddings, \vec{f} .

Example

$$\vec{f} = (1, 3, b, -4)^T$$

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- **Step 2**: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings

Idea: cost is low if similar points are close

Here is one approach:

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

• where w_{ij} is the weight between *i* and *j*.

Interpreting the Cost

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

- If w_{ij} ≈ 0, that pair can be placed very far apart without increasing cost
- If w_{ij} ≈ 1, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

$$mi < Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

Hint: what embedding \vec{f} minimizes it?

• The cost is **always** minimized by taking $\vec{f} = 0$.

This is a "trivial" solution. Not useful.

► Fix: require || f || = 1

Really, any number would work. 1 is convenient.

Exercise

Do you see **another** problem with the cost function, even if we require \vec{f} to be a unit vector?

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

Hint: what other choice of \vec{f} will **always** make this zero?

- ► This is a "**trivial**" solution. Again, not useful.
- Fix: require \vec{f} to be orthogonal to $(1, 1, ..., 1)^T$.
 - Written: $\vec{f} \perp (1, 1, ..., 1)^T$
 - Ensures that solution is not close to trivial solution
 - Might seem strange, but it will work!

The New Optimization Problem

▶ **Given**: an *n* × *n* similarity matrix W

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

How?

- This looks difficult.
- Let's write it in matrix form.
- We'll see that it is actually (hopefully) familiar.

DSC 140B Representation Learning

Lecture 09 | Part 2

The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_i - f_j)^2$$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

Now: write the cost function as a matrix expression.

The Degree Matrix

Recall: in an unweighted graph, the degree of node *i* equals number of neighbors.

Equivalently (where A is the adjacency matrix):

degree(i) =
$$\sum_{j=1}^{n} A_{ij}$$

Since A_{ij} = 1 only if j is a neighbor of i

deg(u) = 3+2+5 = (0)The Degree Matrix

In a weighted graph, define degree of node i similarly:

degree(i) =
$$\sum_{j=1}^{n} w_{ij}$$

That is, it is the total weight of all neighbors.

The Degree Matrix

The degree matrix D of a weighted graph is the diagonal matrix where entry (i, i) is given by:

$$d_{ii} = \text{degree}(i)$$

= $\sum_{j=1}^{n} w_{ij}$

The Graph Laplacian

- ▶ Define L = D W
 - D is the degree matrix
 - W is the similarity matrix (weighted adjacency)
- L is called the Graph Laplacian matrix.
- It is a very useful object

Very Important Fact

Proof: expand both sides

Proof

DSC 140B Representation Learning

Lecture 09 | Part 3

Solving the Optimization Problem

A New Formulation

- ▶ **Given**: an *n* × *n* similarity matrix *W*
- **Compute**: embedding vector \vec{f} minimizing

$$\operatorname{Cost}(\vec{f}) = \frac{1}{2}\vec{f}^{\mathsf{T}}L\vec{f}$$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

This might sound familiar...

Recall: PCA

Given: a *d* × *d* covariance matrix *C*

Find: vector *u* maximizing the variance in the direction of *u*:

ū⁺Củ

subject to $\|\vec{u}\| = 1$.

Solution: take \vec{u} = top eigenvector of *C*

A New Formulation

Forget about orthogonality constraint for now.

Compute: embedding vector \vec{f} minimizing

$$\operatorname{Cost}(\vec{f}) = \frac{1}{2}\vec{f}^{T}L\vec{f}$$

subject to $\|\vec{f}\| = 1.$

5 - 0

Solution: the *bottom* eigenvector of *L*.
 That is, eigenvector with smallest eigenvalue.

Claim

• The bottom eigenvector is
$$\vec{f} = \frac{1}{\sqrt{n}} (1, 1, ..., 1)^T$$

It has associated eigenvalue of 0.

Finat is,
$$L\vec{f} = 0\vec{f} = \vec{0}$$

Spectral¹ Theorem

Theorem

If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

¹"Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

The Fix

- Remember: we wanted \$\vec{f}\$ to be orthogonal to \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T.
 i.e., should be orthogonal to bottom eigenvector of \$L\$.
- Fix: take \vec{f} to the be eigenvector of *L* with with smallest eigenvalue $\neq 0$.

• Will be $\perp \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$ by the **spectral theorem**.

Spectral Embeddings: Problem

- Given: similarity graph with n nodes
- Compute: an embedding of the n points into R¹ so that similar objects are placed nearby
- Formally: find embedding vector \vec{f} minimizing

$$\text{Cost}(\vec{f}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \frac{1}{2} \vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$
Spectral Embeddings: Solution

- ► Form the **graph Laplacian** matrix, *L* = *D W*
- Choose f be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Example

Embedding into \mathbb{R}^k

- This embeds nodes into \mathbb{R}^1 .
- What about embedding into \mathbb{R}^k ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

With k eigenvectors f⁽¹⁾, f⁽²⁾, ..., f^(k), each node is mapped to a point in ℝ^k.

nodel:

η

- Consider node i.
 - First new coordinate is $\vec{f}_i^{(1)}$.
 - Second new coordinate is $\vec{f}_i^{(2)}$.
 - Third new coordinate is $\vec{f}_i^{(3)}$.

Example

vals, vecs = np.linalg.eigh(L)

```
# take two eigenvectors
# to map to R<sup>2</sup>
f = vecs[:,1:3]
```

Example

Laplacian Eigenmaps

This approach is part of the method of "Laplacian eigenmaps"

Introduced by Mikhail Belkin² and Partha Niyogi

It is a type of spectral embedding

²Now at HDSI

A Practical Issue

► The Laplacian is often **normalized**:

$$L_{\rm norm} = D^{-1/2} L D^{-1/2}$$

where $D^{-1/2}$ is the diagonal matrix whose *i*th diagonal entry is $1/\sqrt{d_{ii}}$.

• Proceed by finding the eigenvectors of L_{norm} .

In Summary

- We can **embed** a similarity graph's nodes into R^k using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction

DSC 140B Representation Learning

Lecture 09 | Part 4

Nonlinear Dimensionality Reduction

Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?

PCA?

- Does PCA work here?
- Try projecting onto one principal component.

No

PCA?

- PCA simply "rotates" the data.
- ▶ No amount of rotation will "unroll" the spiral.
- We need a fundamentally different approach that works for non-linear patterns.

Today

Non-linear dimensionality reduction via spectral embeddings.

Last Time: Spectral Embeddings

- Given: a similarity graph with n nodes, number of dimensions k.
- Embed: each node as a point in R^k such that similar nodes are mapped to nearby points
- Solution: bottom k non-constant eigenvectors of graph Laplacian

Idea

- Build a similarity graph from points.
- Points near the spiral should be similar.
- ► Embed the similarity graph into R¹

Today

- I) How do we build a graph from a set of points?
- 2) Dimensionality reduction with Laplacian eigenmaps

Representation Learning

Lecture 09 | Part 5

From Points to Graphs

Dimensionality Reduction

- **Given**: *n* points in \mathbb{R}^d , number of dimensions $k \leq d$
- ▶ **Map**: each point \vec{x} to new representation $\vec{z} \in \mathbb{R}^k$

Idea

- Build a similarity graph from points in \mathbb{R}^2
- Use approach from last lecture to embed into \mathbb{R}^k
- But how do we represent a set of points as a similarity graph?

Why graphs?

Three Approaches

- 1) Epsilon neighbors graph
- > 2) *k*-Nearest neighbor graph
- 3) fully connected graph with similarity function

- lnput: vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}, a$ number ε
- Create a graph with one node *i* per point x⁽ⁱ⁾
- ► Add edge between nodes *i* and *j* if $\|\vec{x}^{(i)} - \vec{x}^{(j)}\| \le \varepsilon$
- Result: unweighted graph

Exercise

What will the graph look like when ε is small? What about when it is large?

Note

- We've drawn these graphs by placing nodes at the same position as the point they represent
- But a graph's nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros like(*)((n,n))
for i in range(n):
    for j in range(n):
        if distance(X[i], X[j]) <= epsilon:
            adj[i, j] = 1</pre>
```

Picking ε

• If ε is too small, graph is underconnected

• If ε is too large, graph is overconnected

If you cannot visualize, just try and see

With scikit-learn

k-Neighbors Graph

- Input: vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}, \dots$ a number k
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between each node i and its k closest neighbors
- Result: unweighted graph

k-Neighbors: Pseudocode

```
# assume the data is in X
n = len(X)
adj = np.zeros_like(*)((n,n))
for i in range(n):
    for j in k_closest_neighbors(X, i):
        adj[i, j] = 1
```
Exercise

Is it possible for a *k*-neighbors graph to be disconected?

With scikit-learn

Fully Connected Graph

- Input: vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}, \dots$ a similarity function h
- Create a graph with one node *i* per point x⁽ⁱ⁾
- Add edge between every pair of nodes. Assign weight of h(x⁽ⁱ⁾, x^(j))
- Result: weighted graph

- A common similarity function: Gaussian
- Must choose σ appropriately

$$h(\vec{x}, \vec{y}) = e^{-\|\vec{x}-\vec{y}\|^2/\sigma^2}$$

Fully Connected: Pseudocode 2, sizma def h(x, y): dist = np.linalg.norm(x, v) return np.exp(-dist**2 / sigma**2) # assume the data is in X n = len(X) $w = np.o_{nes_like}(X) or ((n, n))$ for i in range(n): for j in range(n): w[i, j] = h(X[i], X[j])

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

