DsC /1408

Represaitaton [earmg

Lecture 09 Part1

Embedding Similarities

Similar Netflix Users

Suppose you are a data scientist at Netflix

You're given an n x n similarity matrix W of users
entry (i,j) tells you how similar user i and user j are
1 means “very similar”, 0 means “not at all”

Goal: visualize to find patterns

Idea
We like scatter plots. Can we make one?
Users are not vectors / points!

They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs,
and vice versa.

A B ¢ %
Al / o/ oz g/

gl o/ / 0.7 \/
¢ \ oz o %

Goal

Embed nodes of a similarity graph as points.
Similar nodes should map to nearby points.

o

syf

\%/ o

Today

We will design a graph embedding approach:
Spectral embeddings via Laplacian eigenmaps

More Formally

Given:
A similarity graph with n nodes
a number of dimensions, R

Compute: an embedding of the n points into R¥
so that similar objects are placed nearby

To Start

Given:
A similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Vectors as Embeddings into R’
Suppose we have n nodes (objects) to embed
Assume they are numbered 1, 2, ..., n

Let f1, f5, -, f, € R be the embeddings

-
.

We can pack them all into a vector: f.

Goal: find a good set of embeddings, f

]Z-’

(1,3,0,-4)"

i

-4 -3 -2 -

Example

4‘3 ‘Fp

0 / A

An Optimization Problem
We'll turn it into an optimization problem:

Step 1: Design a cost function quantifying how
good a particular embedding f is

Step 2: Minimize the cost

Example

Which is the best embedding?

Cost Function for Embeddings
Idea: cost is low if similar points are close

Here is one approach:

Cost(f) = > > wy(fi-f;)?

n
i=1 j=1

where w;; is the weight between i and j.

Interpreting the Cost

Cost() = > wylf; - £

n

1=1 J=1
If w;; = 0, that pair can be placed very far apart
without increasing cost

If w;; = 1, the pair should be placed close
together in order to have small cost.

Do you see a problem with the cost function?

vl Cost(f i i w(f; - f;)?

i=1 j=1

Hint: what embedding fminimizes it?

& el —
(0]

- O — s
Problem s 5 0

The cost is always minimized by taking f’ = 0.
This is a “trivial” solution. Not useful.

Fix: require ||f]| = 1
Really, any number would work. 1is convenient.

Do you see another problem with the cost function,
even if we require f to be a unit vector?

o3 S wogy
i=1 j=1

Hint: what other choice of f will always make this
zero?

S AL
) ®Problem

The cost is always minimized by taking

-1 T
f=p(1,1,,0)

This is a “trivial” solution. Again, not useful.

Fix: require fto be orthogonal to (1,1, ..., 1)".
Written: £ L (1,1,...,1)7

Ensures that solution is not close to trivial solution
Might seem strange, but it will work!

The New Optimization Problem

Given: an n x n similarity matrix W

Compute: embedding vector frwg_

subjectto Ifll =1and f L (1,1,...,1)"

How?
This looks difficult.
Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.

psC /40&

Represaitaton [earm@

Lecture 09 | Part 2

The Graph Laplacian

The Problem

Compute: embedding vector fminimizing

Cost(f) = > > wilfi -)

i=1 j=1

subjectto ||f|| =1and f L (1,1,...,1)

Now: write the cost function as a matrix
expression.

&y,

The Degree Matrix

Recall: in an unweighted graph, the degree of
node i equals number of neighbors.

Equivalently (where A is the adjacency matrix):

n
degree(i) ZAU
j=1

Since A;; = 1 only if j is a neighbor of i

4 Cu-) = 2525 =10
Dt/ﬂk The Degree Matrix
Y

In a weighted graph, define degree of node i

similarly:
n

degree(i) = Z w;;

j

That is, it is the total weight of all neighbors.

The Degree Matrix

The degree matrix D of a weighted graph is the
diagonal matrix where entry (i, 1) is given by:

d;; = degree(i)
dﬂz(‘) 0 /%’ n
(zc © =) Wi
LA

Voo’

The Graph Laplacian

DefineL=D-W
D is the degree matrix
W is the similarity matrix (weighted adjacency)

L is called the Graph Laplacian matrix.

It is a very useful object

Very Important Fact
Claim: L—, Of\/\/

Cost(f) = D > wyf;- £ = 5FLf

n n
1=1 j=1

Proof: expand both sides

Proof

psC /40&

Represaitaton [earm@

Lecture 09 | Part 3

Solving the Optimization Problem

A New Formulation
Given: an n x n similarity matrix W

Compute: embedding vector f minimizing
Cost(f) = %fTLf
subjectto |fll=1and f L (1,1,...,1)"

This might sound familiar...

Recall: PCA

Given: a d x d covariance matrix C

Find: vector i maximizing the variance in the
direction of u:
urci

subject to ||d]| = 1.

Solution: take i = top eigenvector of C

A New Formulation

Forget about orthogonality constraint for now.

Compute: embedding vector f minimizing

-

1 -, -
Cost(f) = 2f7Lf |
, ’ K o 5 M‘“"’)«‘o > W
subject to |l = 1. aare 9’"%«57
\9

Solution: the bottom eigenvector of L.
That is, eigenvector with smallest eigenvalue.

Claim

The bottom eigenvector is f = ﬁ(h (e

It has associated eigenvalue of 0.

That is, Lf = Of =0

Spectral' Theorem

Theorem
If A is a symmetric matrix, eigenvectors of A with
distinct eigenvalues are orthogonal to one another.

T“Spectral” not in the sense of specters (ghosts), but because the
eigenvalues of a transformation form the “spectrum”

The Fix

Remember: we wanted fto be orthogonal to

1 T
(11,1

i.e., should be orthogonal to bottom eigenvector of L.

Fix: take f to the be eigenvector of L with with
smallest eigenvalue # 0.

Will be L ﬁ(t 1,...,1)T by the spectral theorem.

Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector f minimizing

n

Cost(f) = Ziw,,) = fTLf

i=1 j=1

subjectto ||f|| =1and f L (1,1,...,1)

Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Choose fbe an eigenvector of L with smallest
eigenvalue > 0

This is the embedding!

Example

z' W = np.array([

[1, 0.1, 0.2],
/ 01 [@.1; 1, O-7]y
g / [0.2, 0.7, 1]

1)
0.7

D = np.diag(W.sum(axis=1))
L=D-W
0.z % vals, vecs = np.linalg.eigh(L)

% f = vecs[:,1]

Example

SV
N

Embedding into R*
This embeds nodes into R'.
What about embedding into R*?

Natural extension: find bottom k eigenvectors
with eigenvalues > 0

New Coordinates

With k eigenvectors), f@, .., f® each node is

mapped to a point in R*. 2
S &)(
, : , w y
Consider node i. i node | - £ £
First new coordinate is f{". [
Second new coordinate is f. "

Third new coordinate is £

Example

W = np.array([
[1, 0.1, 0.2],
[0.2, 1, 0.7],

/g / % . [0.2, 0.7, 1]

np.diag(W.sum(axis=1))

D - W
\ % vals, vecs = np.linalg.eigh(L)

o

—

take two eigenvectors
to map to R"2
f = vecs[:,1:3]

Example

2 0:0 O‘.Z 0.‘4 0.6 0.8
E :C\)

Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin? and Partha Niyogi

It is a type of spectral embedding

ZNow at HDSI

A Practical Issue

The Laplacian is often normalized:

Lyorm = D71/2LD71/2

norm

where D™'/2 is the diagonal matrix whose ith
diagonal entry is ‘I/JdT,-.

Proceed by finding the eigenvectors of L,

In Summary

We can embed a similarity graph’s nodes into R"
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction

DsC /1408

Represaitaton [earm@

Lecture 09 | Part 4

Nonlinear Dimensionality Reduction

Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?

PCA?
Does PCA work here?

Try projecting onto one principal component.

PRI
O et
o~ u. "0 .0
o s B .
FEPE MO e
. - %
’ . 2 .
Pl LY
SO a5,
I I
s - -
LY \“ v
SRS Y .{ o
. 9 o
R S) A
Yoot Ve L
., '
%, Ceeeel?’ .
. R
ve %"

No

PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.

Today

Non-linear dimensionality reduction via
spectral embeddings.

Last Time: Spectral Embeddings

Given: a similarity graph with n nodes, number
of dimensions k.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom kR non-constant eigenvectors of
graph Laplacian

Build a similarity graph
from points.

Points near the spiral
should be similar.

Embed the similarity
graph into R’

Idea

°)-..'-
...- .’:"...“”“ B
e * e
FP v
* L)
id ""'4?-"“ \
. .‘ - K K
Y 5\ J" 4

o
. J
’s. o j" -
@', & .
0% o °
.... ° L4
...... LA 1
*
e’

Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps

DsC /1408

Represaitaton [earmg

Lecture 09 @ Part5s

From Points to Graphs

Dimensionality Reduction

Given: n points in RY, number of dimensions
k<d

Map: each point X to new representation Z € R*

Idea
Build a similarity graph from points in R?
Use approach from last lecture to embed into R*

But how do we represent a set of points as a
similarity graph?

Why graphs?

» y
// ¢ S y
N lA \“\
N ol y
. o
...nc
®e
00 *® %0 o -c.
o®® .o. ~
... ..o‘o.. %o 00.
FAR W
o.‘. \‘.o.o.o' .'. o
o° [4 u.f o
) P ®
. -\.. l&ﬁfnf.- AR
o o, . Py °
Y . s o
s £
N A T
b J - L] &
o.‘ # ou.\ \.oh -M
O. ‘ao ‘.1 ﬁc ﬁ.
o /... % oo\
ﬂl .a\on..o.o -ca
... ...
. o ©

Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function

Epsilon Neighbors Graph

Input: vectors X, ..., X",
a number &

Create a graph with one
node i per point X)

Add edge between nodes i
and j if || X - X0| < ¢

Result: unweighted graph

What will the graph look like when € is small? What
about when it is large?

Epsilon Neighbors Graph

P&

Epsilon Neighbors Graph

Epsilon Neighbors Graph

7

D

lon Neighbors Graph

Epsi

Note

We've drawn these graphs by placing nodes at
the same position as the point they represent

But a graph’s nodes can be drawn in any way

Epsilon Neighbors: Pseudocode

assume the data is in X
n = len(X)
adj = np.zerosﬁ.@@({n,n))
for i in range(n):
for j in range(n):
if distance(X[il, X[j]) <= epsilon:
adj[i, 3] = 1

Picking ¢
If € is too small, graph is underconnected
If € is too large, graph is overconnected

If you cannot visualize, just try and see

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.radius_neighbors_graph(
X,
radius=...

k-Neighbors Graph

Input: vectors X, ..., X",
a number R

Create a graph with one
node i per point X)

Add edge between each
node i and its Rk closest
neighbors

Result: unweighted graph

k-Neighbors: Pseudocode

assume the data is in X
n = len(X)
adj = np.zeros:E:IQ’@t)C(“\“3)
for i in range(n):
for j in k_closest_neighbors(X, i):
adj[i, j] = 12

Is it possible for a k-neighbors graph to be dis-
conected?

k-Neighbors Graph

D ——

7

T
S
E‘. v fi\\ “ Y .
. Ay ~
//\VIH j{{k
. e T
<,

k-Neighbors Graph

k-Neighbors Graph

k-Neighbors Graph

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X,
n_neighbors=...

Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h o

Create a graph with one
node i per point X)

Add edge between every
pair of nodes. Assign

weight of h(X(®, X0)) —

Result: weighted graph

Gaussian Similarity
A common similarity function: Gaussian
Must choose o appropriately

h(x, §) = e VF-91%10? ‘

EAN

Fully Connected: Pseudocode
Kﬁ) $|X.MOL
def h(x, y):

dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma*x2)

assume the data is in X
n = len(X)
W = np.oass=ltitetX) M((nm))
for i in range(n):
for j in range(n):

wli, 31 = h(X[il, X[31) stgma)

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigmaxx2)

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

Gaussian Similarity

