
Lecture 11 | Part 1

Linear Limitations



Linear Predictors▶ Last time, we saw linear prediction functions:𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑= Aug( ⃗𝑥) ⋅ �⃗�



Linear Decision Functions▶ A linear prediction function 𝐻 outputs a number.▶ What if classes are +1 and -1?▶ Can be turned into a decision function by taking:sign(𝐻( ⃗𝑥))▶ Decision boundary is where 𝐻 = 0▶ Where the sign switches from positive to negative.



Decision Boundaries▶ A linear decision function’s decision boundary is
linear.▶ A line, plane, hyperplane, etc.



An Example: Parking Predictor▶ Task: Predict (yes / no): Is there parking
available at UCSD right now?▶ What training data to collect? What features?



Useful Features▶ Time of day?▶ Day’s high temperature?▶ ...



Exercise
Imagine a scatter plot of the training data with the
two features:▶ 𝑥1 = time of day▶ 𝑥2 = temperature
“yes” examples are green, “no” are red.

What does it look like? eI



Parking Data



Uh oh

▶ A linear decision function
won’t work.▶ What do we do?



Today’s Question▶ How do we learn non-linear patterns using linear
prediction functions?
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Feature Maps



Representations▶ We represented the data with two features: time
and temperature▶ In this representation, the trend is nonlinear.▶ There is no good linear decision function▶ Learning is “difficult”.



Idea▶ Idea: We’ll make a new representation by
creating new features from the old features.▶ The “right” representation makes the problem
easy again.▶ What new features should we create?



New Feature Representation▶ Linear prediction functions1 work well when
relationship is linear▶ When 𝑥 is small we should predict -1▶ When 𝑥 is large we should predict +1▶ But parking’s relationship with time is not linear:▶ When time is small we should predict +1▶ When time is medium we should predict -1▶ When time is large we should predict +1

1Remember: they are weighted votes.



Exercise
How can we “transform” the time of day 𝑥1 to
create a new feature 𝑥′1 satisfying:▶ When 𝑥′1 is small, we should predict -1▶ When 𝑥′1 is large, we should predict +1
What about the temperature, 𝑥2?



Idea

▶ Transform “time” to “absolute time
until/since Noon”▶ Transform “temp.” to “absolute
difference between temp. and 72∘”



Basis Functions▶ We will transform:▶ the time, 𝑥1, to |𝑥1 − Noon|▶ the temperature, 𝑥2, to |𝑥2 − 72∘|▶ Formally, we’ve designed non-linear basis
functions: 𝜑1(𝑥1, 𝑥2) = |𝑥1 − Noon|𝜑2(𝑥1, 𝑥2) = |𝑥2 − 72∘|▶ In general a basis function 𝜑 maps ℝ𝑑 → ℝ

i



Feature Mapping▶ Define �⃗�( ⃗𝑥) = (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥))𝑇. �⃗� is a feature map▶ Input: vector in “old” representation▶ Output: vector in “new” representation▶ Example:�⃗�((10a.m., 75∘)𝑇) = (2 hours, 3∘)𝑇▶ �⃗� maps raw data to a feature space.
(2pm 6907



Feature Space, Visualized

I



Exercise

Where does �⃗� map ⃗𝑥(1), ⃗𝑥(2), and ⃗𝑥(3)?
-

z
0
⑧↳-

dom



Solution



After the Mapping▶ The basis functions 𝜑1, 𝜑2 give us our “new”
features.▶ This gives us a new representation.▶ In this representation, learning (classification) is
easier.



Training▶ Map each training example ⃗𝑥(𝑖) to feature space,
creating new training data:⃗𝑧(1) = �⃗�( ⃗𝑥(1)), ⃗𝑧(2) = �⃗�( ⃗𝑥(2)), … , ⃗𝑧(𝑛) = �⃗�( ⃗𝑥(𝑛))▶ Fit linear prediction function 𝐻 in usual way:𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑



Training Data in Feature Space

z1

2z

Found Parking
No Parking

I



Prediction▶ If we have ⃗𝑧 in feature space, prediction is:𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑



Prediction▶ But if we have ⃗𝑥 from original space, we must
“convert” ⃗𝑥 to feature space first:𝐻( ⃗𝑥) = 𝐻𝑓(�⃗�( ⃗𝑥))= 𝐻𝑓( (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑( ⃗𝑥))𝑇 )= 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + … + 𝑤𝑑𝜑𝑑( ⃗𝑥)·itd

u n e

z, Ez Ed



Overview: Feature Mapping▶ A basis function can involve any/all of the
original features: 𝜑3( ⃗𝑥) = 𝑥1 ⋅ 𝑥2▶ We can make more basis functions than original
features: �⃗�( ⃗𝑥) = ( 𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), 𝜑3( ⃗𝑥) )𝑇



Overview: Feature Mapping
1. Start with data in original space, ℝ𝑑.
2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′
3. Map each data point to feature space ℝ𝑑′:⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑡
4. Fit linear prediction function in new space:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)

7.

2.

3.

4.



𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)
𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0



Today’s Question▶ Q: How do we learn non-linear patterns using
linear prediction functions?▶ A: Use non-linear basis functions to map to a
feature space.
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Basis Functions and Regression



By the way...▶ You’ve (probably) seen basis functions used
before.▶ Linear regression for non-linear patterns in DSC
40A.



Example

e



Fitting Non-Linear Patterns▶ Fit function of the form𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4▶ Linear function of �⃗�, non-linear function of 𝑥.



The Trick▶ Treat 𝑥, 𝑥2, 𝑥3, 𝑥4 as new features.▶ Create design matrix:

𝑋 = ⎛⎜⎝
1 𝑥1 𝑥21 𝑥31 𝑥411 𝑥2 𝑥22 𝑥32 𝑥42⋮ ⋮ ⋮ ⋮ ⋮1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛 𝑥4𝑛⎞⎟⎠▶ Solve 𝑋𝑇𝑋�⃗� = 𝑋𝑇�⃗� for �⃗�, as usual.▶ Works for more than just polynomials.



Another View▶ We have changed the representation of a point:𝑥 ↦ (𝑥, 𝑥2, 𝑥3, 𝑥4)▶ Basis functions:𝜑1(𝑥) = 𝑥 𝜑2(𝑥) = 𝑥2 𝜑3(𝑥) = 𝑥3 𝜑4(𝑥) = 𝑥4



Lecture 11 | Part 4

A Tale of Two Spaces



A Tale of Two Spaces▶ The original space: where the raw data lies.▶ The feature space: where the data lies after
feature mapping �⃗�▶ Remember: we fit a linear prediction function in
the feature space.



Exercise▶ In feature space, what does the decision
boundary look like?▶ What does the prediction function surface
look like?

A

it



Decision Boundary in Feature Space2

2Fit by minimizing square loss

E



Prediction Surface in Feature Space

Hf(E)



Exercise▶ In the original space, what does the decision
boundary look like?▶ What does the prediction function surface
look like?

·

H(x)
=He((x))



Decision Boundary in Original Space3

3Fit by minimizing square loss

E



Prediction Surface in Original Space

I**



Insight▶ 𝐻 is a sum of basis functions, 𝜑1 and 𝜑2.▶ 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)▶ The prediction surface is a sum of other surfaces.▶ Each basis function is a “building block”.

x) Fix)



Visualizing the Basis Function 𝜑1
▶ 𝑤0+𝑤1|𝑥1−noon|a

e,()



Visualizing the Basis Function 𝜑2
▶ 𝑤0 + 𝑤2|𝑥2 − 72∘|



Visualizing the Prediction Surface

= +X.

X



Exercise
The decision boundary has a single “pocket” where
it is negative. Can it have more than one, assuming
we use basis functions of the same form? What if
we use more than two basis functions? |x:- c)

y- 4
+

-
I



Answer: No!▶ Recall: the sum of convex functions is convex.▶ Each of our basis functions is convex.▶ So the prediction surface will be convex, too.▶ Limited in what patterns they can classify.



View: Function Approximation

▶ Find a function that is ≈ 1
near green points and ≈ −1
near red points.



What’s Wrong?▶ We’ve discovered how to learn non-linear
patterns using linear prediction functions.▶ Use non-linear basis functions to map to a feature

space.▶ Something should bug you, though...
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Radial Basis Functions



Choosing Basis Functions▶ Our previous basis functions have limitations.▶ They are convex: prediction surface can only
have one negative/positive region.▶ They diverge→∞ away from their centers.▶ They get more “confident”?



Example



Gaussian Basis Functions

▶ A common choice: Gaussian
basis functions:𝜑( ⃗𝑥; �⃗�, 𝜎) = 𝑒−‖ ⃗𝑥−�⃗�‖2/𝜎2▶ �⃗� is the center.▶ 𝜎 controls the “width”·



Gaussian Basis Function▶ If ⃗𝑥 is close to �⃗�, 𝜑( ⃗𝑥; �⃗�, 𝜎) is large.▶ If ⃗𝑥 is far from �⃗�, 𝜑( ⃗𝑥; �⃗�, 𝜎) is small.▶ Intuition: 𝜑 measures how “similar” ⃗𝑥 is to �⃗�.▶ Assumes that “similar” objects have close feature
vectors.



New Representation▶ Pick number of new features, 𝑑′.▶ Pick centers for Gaussians �⃗�(1), … , �⃗�(2), ..., �⃗�(𝑑′)▶ Pick widths: 𝜎1, 𝜎2, … , 𝜎𝑑′ (usually all the same)▶ Define 𝑖th basis function:𝜑𝑖( ⃗𝑥) = 𝑒−‖ ⃗𝑥−�⃗�(𝑖)‖2/𝜎2𝑖



New Representation▶ For any feature vector ⃗𝑥 ∈ ℝ𝑑, map to vector�⃗�( ⃗𝑥) ∈ ℝ𝑑′.▶ 𝜑1: “similarity” of ⃗𝑥 to �⃗�(1)▶ 𝜑2: “similarity” of ⃗𝑥 to �⃗�(2)▶ …▶ 𝜑𝑑′: “similarity” of ⃗𝑥 to �⃗�(𝑑′)▶ Train linear classifier in this new representation.▶ E.g., by minimizing expected square loss.



Exercise
Howmany Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?



Placement

i
O

-(2)

0
M



Feature Space

I



Prediction Function▶ 𝐻( ⃗𝑥) is a sum of Gaussians:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + …= 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−�⃗�1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−�⃗�2‖2/𝜎2 + …



Exercise
What does the surface of the prediction function
look like?

Hint: what does the sumof 1-d Gaussians look like?



Prediction Function Surface

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−�⃗�1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−�⃗�2‖2/𝜎2



An Interpretation▶ Basis function 𝜑𝑖 makes a “bump” in surface of 𝐻▶ 𝑤𝑖 adjusts the “prominance” of this bump



Decision Boundary



More Features▶ By increasing number of basis functions, we can
make more complex decision surfaces.



Another Example



Prediction Surface



Decision Boundary



Radial Basis Functions▶ Gaussians are examples of radial basis functions.▶ Each basis function has a center, ⃗𝑐.▶ Value depends only on distance from center:𝜑( ⃗𝑥; ⃗𝑐) = 𝑓(‖ ⃗𝑥 − ⃗𝑐‖)



Another Radial Basis Function▶ Multiquadric: 𝜑( ⃗𝑥; ⃗𝑐) = √𝜎2 + ‖ ⃗𝑥 − ⃗𝑐‖/𝜎


