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Lecture 11  Part1

Linear Limitations



Linear Predictors

Last time, we saw linear prediction functions:

H(X; W) = Wy + Wi Xq + ... + WyXy
= Aug(X) - w



Linear Decision Functions
A linear prediction function H outputs a number.
What if classes are +1 and -1?

Can be turned into a decision function by taking:
sign(H(X))

Decision boundary is where H = 0
Where the sign switches from positive to negative.



Decision Boundaries

A linear decision function’s decision boundary is
linear.
A line, plane, hyperplane, etc.
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An Example: Parking Predictor

Task: Predict (yes / no): Is there parking
available at UCSD right now?

What training data to collect? What features?



Useful Features
Time of day?

Day’s high temperature?



Imagine a scatter plot of the training data with the
two features:

X, = time of day

X, = temperature

What does it look like?

“yes” examples are green, “no” are red. W(

Hmd



temperature

X2 =

Parking Data
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x1 = time of day



X, = temperature

Uh oh
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X1 = time of day

A linear decision function
won’t work.

What do we do?



Today’s Question

How do we learn non-linear patterns using linear
prediction functions?



pDsC /4o0&

Represaitaton [ earmg

Lecture 11  Part 2

Feature Maps



Representations

We represented the data with two features: time
and temperature

In this representation, the trend is nonlinear.
There is no good linear decision function
Learning is “difficult”.



Idea

Idea: We'll make a new representation by
creating new features from the old features.

The “right” representation makes the problem
easy again.

What new features should we create?



New Feature Representation

Linear prediction functions work well when

relationship is linear
When x is small we should predict -1
When x is large we should predict +1

But parking’s relationship with time is not linear:
When time is small we should predict +1
When time is medium we should predict -1
When time is large we should predict +1

"Remember: they are weighted votes.



How can we “transform” the time of day x, to
create a new feature x; satisfying:

When x; is small, we should predict -1
When x; is large, we should predict +1

What about the temperature, x,?




temperature

X2 =

® Found Parking @
® No Parking

x1 = time of day

Idea

Transform “time” to “absolute time
until/since Noon”

Transform “temp.” to “absolute
difference between temp. and 72"



Basis Functions

We will transform:
) thetime, x,, to |x, - Noon|
7) the temperature, x,, to |x, - 72|

Formally, we've designed non-linear basis
functions:

©y(Xq,X3) = | %5 - 727]

In general a basis function ¢ maps RY - R



Feature Mapping

Define @(X) = (¢,(X), 0,(X))". @ is a feature map
Input: vector in “old” representation
Output: vector in “new” representation

Example: (2 VM b4 o.)
@((10a.m.,75)") = (2 hours, 3°)"

¢ maps raw data to a feature space.



temperature

X2 =

Feature Space, Visualized

® Found Parking @
@ No Parking

%
°®
°® .o.
e  © °
) ..& .....‘
® [)
R TR
: ¢ ) ;,oﬁo. ¢
’. .' ‘ ®
.‘..0 oo © °
% ° °
e o °
['4

x1 = time of day

|temp - 70 degrees|

$2(x)

i ® Found Parking
® No Parking

¢1(x) L |time - noon|



tem;:erature

X2

@ Found Parking
® No Parking
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Where does § map X", Xx?, and X2

©® Found Parking
® No Parking

x1 = time bf day
Ne

¢1(x) = |time - noon|




temperature

X2 =

Solution
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After the Mapping

The basis functions ., @, give us our “new”
features.

This gives us a new representation.

In this representation, learning (classification) is
easier.



Training

Map each training example X{) to feature space,
creating new training data:

02 pERD), 2= (D), ., F0 = HE)

Fit linear prediction function H in usual way:

HHZ) = wo + W2y + Wy2Zy + ..o + WyZy



In Feature Space

Training Data
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Prediction

If we have Z in feature space, prediction is:

HH{Z) = Wo + W2y + Wy2Zy + ..o + WyZy



Prediction

But if we have X from original space, we must
“convert” X to feature space first:
X) = HAD(X 2
0 e 2
= Hf( ((P1(X), LPZ(X)r seey (pd(X)) )
= W + Wy q(X) + Wypy(X) + ... + Wapy(X)
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Overview: Feature Mapping

A basis function can involve any/all of the
original features:

©3(X) = X1 - X,

We can make more basis functions than original
features:

P(X) = (94(X), @,(X), ©3(X))T



Overview: Feature Mapping

). Start with data in original space, RY.
- Choose some basis functions, ¢,, ®,, ..., P4

3. Map each data point to feature space RY":

X - ((P1 (X), (Pz()?)v e (pd’()?))t

W. Fit linear prediction function in new space:

H(X) = wy + w,4(X) + W, 0,(X)



H(X) = wy + W, 4(X) + W, @,(X)




Today’s Question

Q: How do we learn non-linear patterns using
linear prediction functions?

A: Use non-linear basis functions to map to a
feature space.
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Basis Functions and Regression



By the way...

You've (probably) seen basis functions used
before.

Linear regression for non-linear patterns in DSC
40A.



Example




Fitting Non-Linear Patterns

Fit function of the form

- 2 3 4
H(X) = Wy + Wy X + Wy X + W3 X~ + W, X

Linear function of w, non-linear function of x.



The Trick

Treat x, x2, x3, x* as new features.
Create design matrix:

x=[1 X X

ERN)
X ...
w

x

1 x  x
Solve XTXw = X™w for W, as usual.

Works for more than just polynomials.



Another View

We have changed the representation of a point:

x = (x, x%, x3, x%)

Basis functions:

2

@1(x) =X @x00) =x* @3(x) = x> @, (x) = x*
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A Tale of Two Spaces



A Tale of Two Spaces
The original space: where the raw data lies.

The feature space: where the data lies after
feature mapping ¢

Remember: we fit a linear prediction function in
the feature space.



In feature space, what does the decision
boundary look like?
What does the prediction function surface

look like?
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Decision Boundary in Fgature Space’
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|temp - 70 degrees|

$2(x)

¢1(x) = |\ime - noM

2Fit by minimizing square loss



Prediction Surface in Feature Space
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boundary look like?

What does the prediction function surface
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In the original space, what does the decision




Decision Boundary in Original Space®

temperature

X =
o~

‘xl = time of &ay

3Fit by minimizing square loss



Prediction Surface in Original Space
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Insight

H is a sum of basis functions, ¢, and @,.
H(X) = w, + W1‘P1(X) + Wz‘Pz()?)

The prediction suf‘face is a’su % of other surfaces.

Each basis function is a “building block”.



Visualizing the Basis Function g,
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Visualizing the Basis Function ¢,

WO + W2|X2 _72°|
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Visualizing the Prediction Surface
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The decision boundary has a single “pocket” where
itis negative. Can it have more than one, assuming
we use basis functions of the same form? What if
we use more than two basis functions?
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Answer: No!
Recall: the sum of convex functions is convex.
Each of our basis functions is convex.
So the prediction surface will be convex, too.

Limited in what patterns they can classify.



temperature

X2 =

View: Function Approximation
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x; = time of day



What's Wrong?

We've discovered how to learn non-linear
patterns using linear prediction functions.

Use non-linear basis functions to map to a feature
space.

Something should bug you, though...
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Radial Basis Functions



Choosing Basis Functions

Our previous basis functions have limitations.

They are convex: prediction surface can only
have one negative/positive region.

They diverge —» o away from their centers.
They get more “confident”?






Gaussian Basis Functions

A common _choice: Gaussian
basis functions:

@5 f,0) = e VA1
fi is the center.

o controls the “width”




Gaussian Basis Function
If X is close to [i, @(X; i, 0) is large.
If X is far from [, @(X; l, o) is small.

Intuition: ¢ measures how “similar” X is to [i.

Assumes that “similar” objects have close feature
vectors.



New Representation

Pick number of new features, d’.

Pick centers for Gaussians ("), ..., i@, ..., it

Pick widths: g,,0,,...,04 (usually all the same)
Define ith basis function:

(%) = e VA0
I



New Representation

For any feature vector X € RY, map to vector
P(X) e RY.

@,: “similarity” of X to §("

®,: “similarity” of X to fi®

g “similarity” of X to fi®"

Train linear classifier in this new representation.
E.g., by minimizing expected square loss.



How many Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?
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Placement
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Feature Space
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Prediction Function

H(X) is a sum of Gaussians:

H(X) = Wy + Wy (X) + wyy(X) + ...

it 1252 i1 62
= Wy + W, e IX-p4l</0° w,e IX-p2l</0



What does the surface of the prediction function
look like?

Hint: what does the sum of 1-d Gaussians look like?




Prediction Function Surface

- Nx=ii. 12 /a2 _Nx=ii-Nn2/a52
H(X) = w, + w,e IX-g411%/0% w,e IX-[, 117/ 0



An Interpretation

Basis function ¢; makes a “bump” in surface of H
w; adjusts the “prominance” of this bump



Decision Boundary
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More Features

By increasing number of basis functions, we can
make more complex decision surfaces.




Another Example
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Prediction Surface




Decision Boundary




Radial Basis Functions
Gaussians are examples of radial basis functions.
Each basis function has a center, C.

Value depends only on distance from center:

p(x;€) = f(I1x - Cl)



Another Radial Basis Function

Multiquadric: @(X;C \/02 +||X-C|/o



