DEC $140 B$ Representation Learning Lecture 11 | Part 1
Linear Limitations

Linear Predictors

- Last time, we saw linear prediction functions:

$$
\begin{aligned}
H(\vec{x} ; \vec{w}) & =w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d} \\
& =\operatorname{Aug}(\vec{x}) \cdot \vec{w}
\end{aligned}
$$

Linear Decision Functions

\Rightarrow A linear prediction function H outputs a number.

- What if classes are +1 and -1 ?
- Can be turned into a decision function by taking:

$$
\operatorname{sign}(H(\vec{x}))
$$

- Decision boundary is where $H=0$
\downarrow Where the sign switches from positive to negative.

Decision Boundaries

- A linear decision function's decision boundary is linear.
- A line, plane, hyperplane, etc.

An Example: Parking Predictor

- Task: Predict (yes / no): Is there parking available at UCSD right now?
- What training data to collect? What features?

Useful Features

- Time of day?
- Day's high temperature?

Exercise

Imagine a scatter plot of the training data with the two features:
$x_{1}=$ time of day

- $x_{2}=$ temperature
"yes" examples are green, "no" are red.
What does it look like?

Parking Data

Uh oh

- A linear decision function won't work.

What do we do?

Today's Question

How do we learn non-linear patterns using linear prediction functions?

DST $140 B$
Representation Learning Lecture 11 | Part 2
Feature Maps

Representations

- We represented the data with two features: time and temperature
- In this representation, the trend is nonlinear.
\Rightarrow There is no good linear decision function
> Learning is "difficult".

Idea

- Idea: We'll make a new representation by creating new features from the old features.
- The "right" representation makes the problem easy again.
- What new features should we create?

New Feature Representation

- Linear prediction functions ${ }^{1}$ work well when relationship is linear
- When x is small we should predict -1
\Rightarrow When x is large we should predict +1
- But parking's relationship with time is not linear:
- When time is small we should predict +1
- When time is medium we should predict -1
- When time is large we should predict +1

[^0]
Exercise

How can we "transform" the time of day x_{1} to create a new feature x_{1}^{\prime} satisfying:

- When x_{1}^{\prime} is small, we should predict -1

When x_{1}^{\prime} is large, we should predict +1
What about the temperature, x_{2} ?

Idea

- Transform "time" to "absolute time until/since Noon"
- Transform "temp." to "absolute difference between temp. and 72""

Basis Functions

- We will transform:

1) the time, x_{1}, to | x_{1} - Noon |

27 the temperature, x_{2}, to $\left|x_{2}-72^{\circ}\right|$

- Formally, we've designed non-linear basis functions:

$$
\begin{aligned}
\varphi_{1}\left(x_{1}, x_{2}\right) & =\mid x_{1}-\text { Noon } \mid \\
\varphi_{2}\left(x_{1}, x_{2}\right) & =\left|x_{2}-72^{\circ}\right|
\end{aligned}
$$

\checkmark In general a basis function φ maps $\mathbb{R}^{d} \rightarrow \mathbb{R}$

Feature Mapping

- Define $\vec{\varphi}(\vec{x})=\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x})\right)^{T} . \vec{\varphi}$ is a feature map
- Input: vector in "old" representation
- Output: vector in "new" representation
- Example:
(ppm 6a<compat>ᄀ)

$$
\vec{\varphi}\left(\left(10 \mathrm{a} . \mathrm{m} ., 75^{\circ}\right)^{\top}\right)=\left(2 \text { hours, } 3^{\circ}\right)^{\top}
$$

- $\vec{\varphi}$ maps raw data to a feature space.

Feature Space, Visualized

Exercise

Where does $\vec{\varphi}$ map $\vec{x}^{(1)}, \vec{x}^{(2)}$, and $\vec{x}^{(3)}$?

Solution

After the Mapping

- The basis functions φ_{1}, φ_{2} give us our "new" features.
- This gives us a new representation.
- In this representation, learning (classification) is easier.

Training

- Map each training example $\vec{x}^{(i)}$ to feature space, creating new training data:

$$
\vec{z}^{(1)}=\vec{\varphi}\left(\vec{x}^{(1)}\right), \quad \vec{z}^{(2)}=\vec{\varphi}\left(\vec{x}^{(2)}\right), \quad \ldots, \quad \vec{z}^{(n)}=\vec{\varphi}\left(\vec{x}^{(n)}\right)
$$

- Fit linear prediction function H in usual way:

$$
H_{f}(\vec{z})=w_{0}+w_{1} z_{1}+w_{2} z_{2}+\ldots+w_{d} z_{d}
$$

Training Data in Feature Space

Prediction

If we have \vec{z} in feature space, prediction is:

$$
H_{f}(\vec{z})=w_{0}+w_{1} z_{1}+w_{2} z_{2}+\ldots+w_{d} z_{d}
$$

Prediction

- But if we have \vec{x} from original space, we must "convert" \vec{x} to feature space first:

$$
\begin{aligned}
H(\vec{x}) & =H_{f}(\vec{\varphi}(\vec{x}))_{z_{1}} \\
& =H_{f}((\varphi_{1}(\vec{x}), \overbrace{2}^{\varphi_{2}(\vec{x})}, \ldots, \overbrace{d}\left(\overrightarrow{\left.\varphi_{d}(\vec{x})\right)^{T}}\right) \\
& =w_{0}+w_{1} \underbrace{\varphi_{1}(\vec{x})}_{Z_{1}}+w_{2} \underbrace{\varphi_{2}(\vec{x})}_{z_{2}}+\ldots+w_{d} \underbrace{\varphi_{d}(\vec{x})}_{z_{d}}
\end{aligned}
$$

Overview: Feature Mapping

- A basis function can involve any/all of the original features:

$$
\varphi_{3}(\vec{x})=x_{1} \cdot x_{2}
$$

- We can make more basis functions than original features:

$$
\vec{\varphi}(\vec{x})=\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x}), \varphi_{3}(\vec{x})\right)^{\top}
$$

Overview: Feature Mapping

1. Start with data in original space, \mathbb{R}^{d}.

2 Choose some basis functions, $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d^{\prime}}$
3. Map each data point to feature space $\mathbb{R}^{d^{\prime}}$:

$$
\vec{x} \mapsto\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x}), \ldots, \varphi_{d^{\prime}}(\vec{x})\right)^{t}
$$

4. Fit linear prediction function in new space:

$$
H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})
$$

$$
H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})
$$

Today's Question

- Q: How do we learn non-linear patterns using linear prediction functions?
- A: Use non-linear basis functions to map to a feature space.

DEC $140 B$ Representation Learning Lecture 11 | Part 3
Basis Functions and Regression

By the way...

- You've (probably) seen basis functions used before.
- Linear regression for non-linear patterns in DSC 40A.

Example

$$
\varphi(x)=e^{x}
$$

Fitting Non-Linear Patterns

- Fit function of the form

$$
H(x)=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+w_{4} x^{4}
$$

- Linear function of \vec{w}, non-linear function of x.

The Trick

- Treat x, x^{2}, x^{3}, x^{4} as new features.
- Create design matrix:

$$
x=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & x_{1}^{4} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & x_{2}^{4} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & x_{n}^{4}
\end{array}\right)
$$

- Solve $X^{\top} X \vec{w}=X^{\top} \vec{w}$ for \vec{w}, as usual.
- Works for more than just polynomials.

Another View

- We have changed the representation of a point:

$$
x \mapsto\left(x, x^{2}, x^{3}, x^{4}\right)
$$

- Basis functions:

$$
\varphi_{1}(x)=x \quad \varphi_{2}(x)=x^{2} \quad \varphi_{3}(x)=x^{3} \quad \varphi_{4}(x)=x^{4}
$$

DEC $140 B$
Representation Learning Lecture 11 Part 4
A Tale of Two Spaces

A Tale of Two Spaces

- The original space: where the raw data lies.
- The feature space: where the data lies after feature mapping $\vec{\varphi}$
- Remember: we fit a linear prediction function in the feature space.

Exercise

- In feature space, what does the decision boundary look like?
- What does the prediction function surface look like?

Decision Boundary in Feature Space ${ }^{2}$

${ }^{2}$ Fit by minimizing square loss

Prediction Surface in Feature Space

Exercise

- In the original space, what does the decision boundary look like?
- What does the prediction function surface look like?

Decision Boundary in Original Space ${ }^{3}$

$H(\vec{x})=0$

${ }^{3}$ Fit by minimizing square loss

Prediction Surface in Original Space

Insight

- H is a sum of basis functions, φ_{1} and φ_{2}.
$\Rightarrow H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})$
- The prediction surface is a sum of other surfaces.
- Each basis function is a "building block".

Visualizing the Basis Function $\not \varphi_{1}$
 ${ }^{1}$

Visualizing the Basis Function φ_{2}

$\Rightarrow w_{0}+w_{2}\left|x_{2}-72^{\circ}\right|$

Visualizing the Prediction Surface

$+$

Exercise

The decision boundary has a single "pocket" where it is negative. Can it have more than one, assuming we use basis functions of the same form? What if we use more than two basis functions?
$\left|x_{i}-c\right|$

Answer: No!

- Recall: the sum of convex functions is convex.
- Each of our basis functions is convex.
- So the prediction surface will be convex, too.
- Limited in what patterns they can classify.

View: Function Approximation

- Find a function that is ≈ 1 near green points and ≈-1 near red points.

What's Wrong?

- We've discovered how to learn non-linear patterns using linear prediction functions.
- Use non-linear basis functions to map to a feature space.
- Something should bug you, though...

DST $140 B$ Representation Learning Lecture $11 \mid$ Part 5
Radial Basis Functions

Choosing Basis Functions

- Our previous basis functions have limitations.
- They are convex: prediction surface can only have one negative/positive region.
\Rightarrow They diverge $\rightarrow \infty$ away from their centers.
- They get more "confident"?

Example

$$
\begin{aligned}
& 0
\end{aligned}
$$

Gaussian Basis Functions

- A common choice: Gaussian basis functions:

$$
\varphi(\vec{x} ; \vec{\mu}, \sigma)=e^{-\|\vec{x}-\vec{\mu}\|^{2} / \sigma^{2}}
$$

- $\vec{\mu}$ is the center.
- σ controls the "width"

Gaussian Basis Function

- If \vec{x} is close to $\vec{\mu}, \varphi(\vec{x} ; \vec{\mu}, \sigma)$ is large.
- If \vec{x} is far from $\vec{\mu}, \varphi(\vec{x} ; \vec{\mu}, \sigma)$ is small.
- Intuition: φ measures how "similar" \vec{x} is to $\vec{\mu}$.
- Assumes that "similar" objects have close feature vectors.

New Representation

- Pick number of new features, d^{\prime}.
- Pick centers for Gaussians $\vec{\mu}^{(1)}, \ldots, \vec{\mu}^{(2)}, \ldots, \vec{\mu}^{\left(d^{\prime}\right)}$
- Pick widths: $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d^{\prime}}$ (usually all the same)
- Define ith basis function:

$$
\varphi_{i}(\vec{x})=e^{-\left\|\vec{x}-\tilde{\mu}^{(i)}\right\|^{2} / \sigma_{i}^{2}}
$$

New Representation

- For any feature vector $\vec{x} \in \mathbb{R}^{d}$, map to vector $\vec{\varphi}(\vec{x}) \in \mathbb{R}^{d^{\prime}}$.
φ_{1} : "similarity" of \vec{x} to $\vec{\mu}^{(1)}$
- φ_{2} : "similarity" of \vec{x} to $\vec{\mu}^{(2)}$
- $\varphi_{d^{\prime}}:$ "similarity" of \vec{x} to $\vec{\mu}^{\left(d^{\prime}\right)}$
- Train linear classifier in this new representation.
- E.g., by minimizing expected square loss.

Exercise

How many Gaussian basis functions would you use, and where would you place them to create a new representation for this data?

Placement

Feature Space

Prediction Function

- $H(\vec{x})$ is a sum of Gaussians:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})+\ldots \\
& =w_{0}+w_{1} e^{-\left\|\vec{x}-\mu_{1}\right\|^{2} / \sigma^{2}}+w_{2} e^{-\left\|\vec{x}-\vec{\mu}_{2}\right\|^{2} / \sigma^{2}}+\ldots .
\end{aligned}
$$

Exercise

What does the surface of the prediction function look like?

Hint: what does the sum of 1-d Gaussians look like?

Prediction Function Surface

$$
H(\vec{x})=w_{0}+w_{1} e^{-\left\|\vec{x}-\vec{\mu}_{1}\right\|^{2} / \sigma^{2}}+w_{2} e^{-\left\|\vec{x}-\vec{\mu}_{2}\right\|^{2} / \sigma^{2}}
$$

An Interpretation

- Basis function φ_{i} makes a "bump" in surface of H > w_{i} adjusts the "prominance" of this bump

Decision Boundary

More Features

- By increasing number of basis functions, we can make more complex decision surfaces.

Another Example

Prediction Surface

Decision Boundary

Radial Basis Functions

- Gaussians are examples of radial basis functions.
- Each basis function has a center, \vec{c}.
- Value depends only on distance from center:

$$
\varphi(\vec{x} ; \vec{c})=f(\|\vec{x}-\vec{c}\|)
$$

Another Radial Basis Function

Multiquadric: $\varphi(\vec{x} ; \vec{c})=\sqrt{\sigma^{2}+\|\vec{x}-\vec{c}\|} / \sigma$

[^0]: ${ }^{1}$ Remember: they are weighted votes.

