Representation Learning

Lecture 11 | Part 1

Linear Limitations

Linear Predictors

Last time, we saw linear prediction functions:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d$$

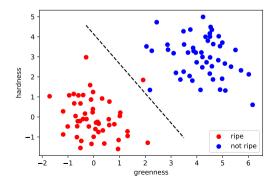
= Aug(\vec{x}) · \vec{w}

Linear Decision Functions

- ► A linear prediction function *H* outputs a number.
- What if classes are +1 and -1?
- ► Can be turned into a **decision function** by taking: sign($H(\vec{x})$)
- Decision boundary is where H = 0
 - Where the sign switches from positive to negative.

Decision Boundaries

- A linear decision function's decision boundary is linear.
 - A line, plane, hyperplane, etc.



An Example: Parking Predictor

- Task: Predict (yes / no): Is there parking available at UCSD right now?
- What training data to collect? What features?

Useful Features

► Time of day?

Day's high temperature?

•••

Exercise

Imagine a scatter plot of the training data with the two features:

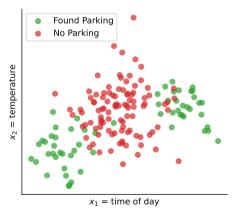
- x_1 = time of day
- x_2 = temperature

"yes" examples are green, "no" are red.

What does it look like?

Parking Data

Uh oh



- A linear decision function won't work.
- What do we do?

Today's Question

How do we learn non-linear patterns using linear prediction functions?

Representation Learning

Lecture 11 | Part 2

Feature Maps

Representations

- We represented the data with two features: time and temperature
- ▶ In this **representation**, the trend is **nonlinear**.
 - There is no good linear decision function
 - Learning is "difficult".

Idea

- Idea: We'll make a new representation by creating new features from the old features.
- The "right" representation makes the problem easy again.
- What new features should we create?

New Feature Representation

- Linear prediction functions¹ work well when relationship is linear
 - When x is small we should predict -1
 - When x is large we should predict +1
- But parking's relationship with time is not linear:
 - When time is small we should predict +1
 - When time is medium we should predict -1
 - When time is large we should predict +1

¹Remember: they are weighted votes.

Exercise

How can we "transform" the time of day x_1 to create a new feature x'_1 satisfying:

- When x'_1 is small, we should predict -1
- When x'_1 is large, we should predict +1

What about the temperature, x_2 ?

Idea

 $x_1 = time of day$

- Transform "time" to "absolute time until/since Noon"
- Transform "temp." to "absolute difference between temp. and 72[.]"

Basis Functions

► We will transform:

- the time, x_1 , to $|x_1 Noon|$
- the temperature, x_2 , to $|x_2 72^\circ|$
- Formally, we've designed non-linear basis functions:

$$\varphi_1(x_1, x_2) = |x_1 - Noon|$$

 $\varphi_2(x_1, x_2) = |x_2 - 72^{\circ}|$

▶ In general a basis function φ maps $\mathbb{R}^d \to \mathbb{R}$

Feature Mapping

► Define $\vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}))^T$. $\vec{\phi}$ is a feature map ► Input: vector in "old" representation

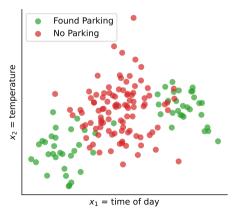
Output: vector in "new" representation

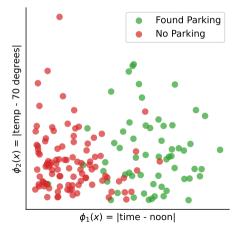
Example:

$$\vec{\phi}((10a.m., 75^{\circ})^{T}) = (2 \text{ hours, } 3^{\circ})^{T}$$

 $\mathbf{\phi}$ maps raw data to a **feature space**.

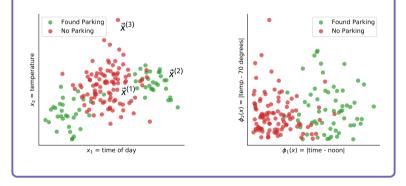
Feature Space, Visualized



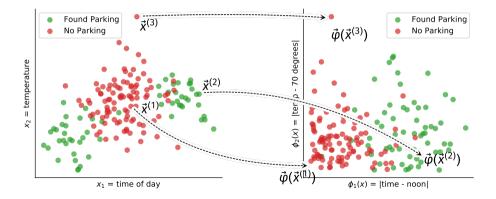


Exercise

Where does $\vec{\varphi}$ map $\vec{x}^{(1)}$, $\vec{x}^{(2)}$, and $\vec{x}^{(3)}$?



Solution



After the Mapping

- The basis functions φ_1, φ_2 give us our "new" features.
- ► This gives us a new **representation**.
- In this representation, learning (classification) is easier.

Training

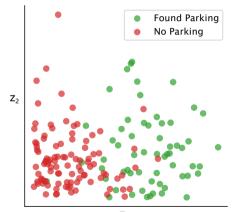
Map each training example x⁽ⁱ⁾ to feature space, creating new training data:

$$\vec{z}^{(1)} = \vec{\varphi}(\vec{x}^{(1)}), \quad \vec{z}^{(2)} = \vec{\varphi}(\vec{x}^{(2)}), \quad \dots, \quad \vec{z}^{(n)} = \vec{\varphi}(\vec{x}^{(n)})$$

Fit linear prediction function *H* in usual way:

$$H_f(\vec{z}) = w_0 + w_1 z_1 + w_2 z_2 + \dots + w_d z_d$$

Training Data in Feature Space



Prediction

If we have \vec{z} in feature space, prediction is:

$$H_f(\vec{z}) = W_0 + W_1 z_1 + W_2 z_2 + \dots + W_d z_d$$

Prediction

But if we have x from original space, we must "convert" x to feature space first:

$$\begin{split} H(\vec{x}) &= H_f(\vec{\varphi}(\vec{x})) \\ &= H_f((\varphi_1(\vec{x}), \varphi_2(\vec{x}), \dots, \varphi_d(\vec{x}))^T) \\ &= w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x}) + \dots + w_d \varphi_d(\vec{x}) \end{split}$$

Overview: Feature Mapping

A basis function can involve any/all of the original features:

$$\varphi_3(\vec{x}) = x_1 \cdot x_2$$

We can make more basis functions than original features:

$$\vec{\varphi}(\vec{x}) = (\varphi_1(\vec{x}), \varphi_2(\vec{x}), \varphi_3(\vec{x}))^T$$

Overview: Feature Mapping

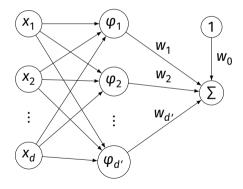
1. Start with data in original space, \mathbb{R}^d .

- 2. Choose some basis functions, $\varphi_1, \varphi_2, ..., \varphi_{d'}$
- 3. Map each data point to **feature space** $\mathbb{R}^{d'}$: $\vec{x} \mapsto (\varphi_1(\vec{x}), \varphi_2(\vec{x}), \dots, \varphi_{d'}(\vec{x}))^t$

4. Fit linear prediction function in new space:

$$H(\vec{x})=w_0+w_1\varphi_1(\vec{x})+w_2\varphi_2(\vec{x})$$

$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x})$$



Today's Question

- Q: How do we learn non-linear patterns using linear prediction functions?
- A: Use non-linear basis functions to map to a feature space.

Representation Learning

Lecture 11 | Part 3

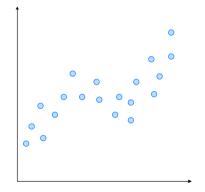
Basis Functions and Regression

By the way...

You've (probably) seen basis functions used before.

Linear regression for non-linear patterns in DSC 40A.

Example



Fitting Non-Linear Patterns

► Fit function of the form

$$H(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

Linear function of \vec{w} , non-linear function of x.

The Trick

Freat x, x^2 , x^3 , x^4 as **new** features.

Create design matrix:

$$X = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 & x_1^4 \\ 1 & x_2 & x_2^2 & x_2^3 & x_2^4 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & x_n^4 \end{pmatrix}$$

- Solve $X^T X \vec{w} = X^T \vec{w}$ for \vec{w} , as usual.
- Works for more than just polynomials.

Another View

We have changed the representation of a point:

$$x\mapsto (x,x^2,x^3,x^4)$$

Basis functions:

$$\varphi_1(x) = x \quad \varphi_2(x) = x^2 \quad \varphi_3(x) = x^3 \quad \varphi_4(x) = x^4$$

Representation Learning

Lecture 11 | Part 4

A Tale of Two Spaces

A Tale of Two Spaces

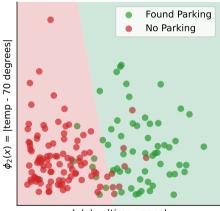
The original space: where the raw data lies.

- The feature space: where the data lies after feature mapping $\vec{\varphi}$
- Remember: we fit a linear prediction function in the **feature space**.

Exercise

- In feature space, what does the decision boundary look like?
- What does the prediction function surface look like?

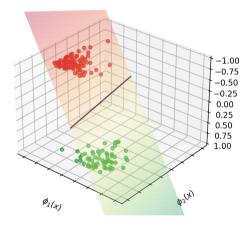
Decision Boundary in Feature Space²



 $\phi_1(x) = |$ time - noon|

²Fit by minimizing square loss

Prediction Surface in Feature Space



Exercise

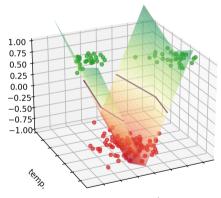
- In the original space, what does the decision boundary look like?
- What does the prediction function surface look like?



Decision Boundary in Original Space³

³Fit by minimizing square loss

Prediction Surface in Original Space

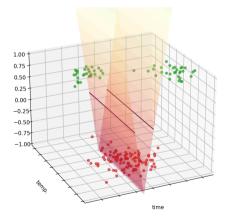


time

Insight

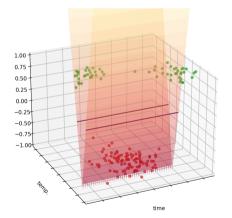
- ► *H* is a sum of basis functions, φ_1 and φ_2 . ► $H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x})$
- The prediction surface is a sum of other surfaces.
- Each basis function is a "building block".

Visualizing the Basis Function φ_1

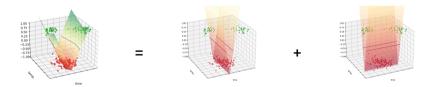


 $w_0 + w_1 | x_1 - noon |$

Visualizing the Basis Function φ_2



Visualizing the Prediction Surface



View: Function Approximation

 $x_1 = \text{time of day}$

Find a function that is ≈ 1 near green points and ≈ -1 near red points.

x₂ = temperature

What's Wrong?

- We've discovered how to learn non-linear patterns using linear prediction functions.
 Use non-linear basis functions to map to a feature space.
- Something should bug you, though...