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Radial Basis Functions



Recap▶ Linear prediction functions are limited.▶ Idea: transform the data to a new space where
prediction is “easier”.▶ To do so, we used basis functions.



Overview: Feature Mapping
1. Start with data in original space, ℝ𝑑.
2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′
3. Map each data point to feature space ℝ𝑑′:⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑡
4. Fit linear prediction function in new space:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)
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𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)
𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0



Generic Basis Functions▶ The basis functions we used before were
engineered using domain knowledge.▶ They were specific to the problem at hand.▶ Very manual process!▶ Now: features that work for many problems.



Example



Gaussian Basis Functions

▶ A common choice: Gaussian
basis functions:𝜑( ⃗𝑥; 𝜇⃗, 𝜎) = 𝑒−‖ ⃗𝑥−𝜇⃗‖2/𝜎2▶ 𝜇⃗ is the center.▶ 𝜎 controls the “width”



Gaussian Basis Function▶ If ⃗𝑥 is close to 𝜇⃗, 𝜑( ⃗𝑥; 𝜇⃗, 𝜎) is large.▶ If ⃗𝑥 is far from 𝜇⃗, 𝜑( ⃗𝑥; 𝜇⃗, 𝜎) is small.▶ Intuition: 𝜑 measures how “similar” ⃗𝑥 is to 𝜇⃗.▶ Assumes that “similar” objects have close feature
vectors.



New Representation▶ Pick number of new features, 𝑑′.▶ Pick centers for Gaussians 𝜇⃗(1), … , 𝜇⃗(2), ..., 𝜇⃗(𝑑′)▶ Pick widths: 𝜎1, 𝜎2, … , 𝜎𝑑′ (usually all the same)▶ Define 𝑖th basis function:𝜑𝑖( ⃗𝑥) = 𝑒−‖ ⃗𝑥−𝜇⃗(𝑖)‖2/𝜎2𝑖



New Representation▶ For any feature vector ⃗𝑥 ∈ ℝ𝑑, map to vector𝜑⃗( ⃗𝑥) ∈ ℝ𝑑′.▶ 𝜑1: “similarity” of ⃗𝑥 to 𝜇⃗(1)▶ 𝜑2: “similarity” of ⃗𝑥 to 𝜇⃗(2)▶ …▶ 𝜑𝑑′: “similarity” of ⃗𝑥 to 𝜇⃗(𝑑′)▶ Train linear classifier in this new representation.▶ E.g., by minimizing expected square loss.



Exercise
Howmany Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?
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Prediction Function▶ 𝐻( ⃗𝑥) is a sum of Gaussians:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + …= 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2 + …
e



Exercise
What does the surface of the prediction function
look like?

Hint: what does the sumof 1-d Gaussians look like?



Prediction Function Surface

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2



An Interpretation▶ Basis function 𝜑𝑖 makes a “bump” in surface of 𝐻▶ 𝑤𝑖 adjusts the “prominance” of this bumpOaussiedi



Decision Boundary
H(x)

=0



More Features▶ By increasing number of basis functions, we can
make more complex decision surfaces.
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Prediction Surface



Decision Boundary



Radial Basis Functions▶ Gaussians are examples of radial basis functions.▶ Each basis function has a center, ⃗𝑐.▶ Value depends only on distance from center:𝜑( ⃗𝑥; ⃗𝑐) = 𝑓(‖ ⃗𝑥 − ⃗𝑐‖)



Another Radial Basis Function▶ Multiquadric: 𝜑( ⃗𝑥; ⃗𝑐) = √𝜎2 + ‖ ⃗𝑥 − ⃗𝑐‖/𝜎
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Radial Basis Function Networks



Recap
1. Choose basis functions, 𝜑1, … , 𝜑𝑑′
2. Transform data to new representation:⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑇
3. Train a linear classifier in this new space:𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + … + 𝑤𝑑′𝜑𝑑′( ⃗𝑥)

"



The Model▶ The 𝜑 are basis functions.𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0 𝐻( ⃗𝑥) = 𝑤0+𝑤1𝜑1( ⃗𝑥)+𝑤2𝜑2( ⃗𝑥)



Radial Basis Function Networks

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0 If the basis functions are

radial basis functions, we
call this a radial basis
function (RBF) network.



Training▶ An RBF network has these parameters:▶ the parameters of each individual basis function:▶ 𝜇⃗𝑖 (the center)▶ possibly others (e.g., 𝜎)▶ 𝑤𝑖: the weights associated to each “new” feature▶ How do we choose the parameters?



First Idea▶ We can include all parameters in one big cost
function, optimize.▶ The cost function will generally be complicated,
non-convex and thus hard to optimize.

2 (Wo,w., ...,wa,M",l, ..., 0d)



Another Idea▶ Break the process into two steps:

1. Find the parameters of the RBFs somehow.▶ Some optimization procedure, clustering, randomly, ...

2. Having fixed those parameters, optimize the 𝑤’s.▶ Linear; easier to optimize.



Training

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0



Training an RBF Network
1. Choose the form of the RBF, how many.▶ E.g., 𝑘 Gaussian RBFs, 𝜑1, … , 𝜑𝑘.
2. Pick the parameters of the RBFs somehow.

3. Create new data set by mapping⃗𝑥 ↦ (𝜑1( ⃗𝑥), … , 𝜑𝑘( ⃗𝑥))𝑇
4. Train a linear predictor 𝐻𝑓 on new data set▶ That is, in feature space.
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Making Predictions
1. Given a point ⃗𝑥, map it to feature space:⃗𝑥 ↦ (𝜑1( ⃗𝑥), … , 𝜑𝑘( ⃗𝑥))𝑇
2. Evaluate the trained linear predictor 𝐻𝑓 in
feature space

1.

2.
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Choosing RBF Locations



Recap▶ We map data to a new representation by first
choosing basis functions.▶ Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.▶ Requires choosing center for each basis function.



Prediction Function

▶ Our prediction function 𝐻
is a surface that is made
up of Gaussian “bumps”.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2



Choosing Centers

▶ Place the centers where
the value of the prediction
function should be
controlled.▶ Intuitively: place centers
where the data is.

X



Approaches
1. Every data point as a center

2. Randomly choose centers

3. Clustering

1.

2.

3.



Approach #1: Every Data Point as a
Center
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Dimensionality▶ We’ll have 𝑛 basis functions – one for each point.▶ That means we’ll have 𝑛 features.▶ Each feature vector 𝜙⃗( ⃗𝑥) ∈ ℝ𝑛.𝜙⃗( ⃗𝑥) = (𝜙1( ⃗𝑥), 𝜙2( ⃗𝑥), … , 𝜙𝑛( ⃗𝑥))𝑇



Problems

▶ This causes problems.▶ First: more likely to
overfit.▶ Second: computationally
expensive



Computational Cost▶ Suppose feature matrix 𝑋 is 𝑛 × 𝑑▶ 𝑛 points in 𝑑 dimensions▶ Time complexity of solving 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦 is Θ(𝑛𝑑2)▶ Usually 𝑑 ≪ 𝑛. But if 𝑑 = 𝑛, this is Θ(𝑛3).▶ Not great! If 𝑛 ≈ 10, 000, then takes > 10 minutes.
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Approach #2: A Random Sample▶ Idea: randomly choose 𝑘 data points as centers.
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Problem▶ May undersample/oversample a region.▶ More advanced sampling approaches exist.



Approach #3: Clustering▶ Group data points into clusters.▶ Cluster centers are good places for RBFs.▶ For example, use 𝑘-means clustering to pick 𝑘
centers.
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Neural Networks



Beyond RBFs▶ When training RBFs, we fixed the basis functions
before training the weights.▶ Representation learning was decoupled from
learning the prediction function.▶ Now: learn representation and prediction
function together.



Linear Models

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0



Generalizing Linear Models▶ The brain is a network of neurons.▶ The output of a neuron is used as an input to
another.▶ Idea: chain together multiple “neurons” into a
neural network.



Neural Network1 (One Hidden Layer)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑊(1)01𝑊(1)02𝑊(1)03 𝑊(2)01

1Specifically, a fully-connected, feed-forward neural network



Architecture▶ Neurons are organized into layers.▶ Input layer, output layer, and hidden layers.▶ Number of cells in input layer determined by
dimensionality of input feature vectors.▶ Number of cells in hidden layer(s) is determined
by you.▶ Output layer can have >1 neuron.



Architecture▶ Can have more than one hidden layer.▶ A network is “deep” if it has >1 hidden layer.▶ Hidden layers can have different number of
neurons.



Neural Network (Two Hidden Layers)𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮

∑
∑
∑
⋮ ∑-) fea



Network Weights▶ A neural network is a type of function.▶ Like a linear model, a NN is totally determined
by its weights.▶ But there are often many more weights to learn!
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Notation

▶ Input is layer #0.▶ 𝑊 (𝑖)𝑗𝑘 denotes weight
of connection
between neuron 𝑗 in
layer (𝑖 − 1) and
neuron 𝑘 in layer 𝑖▶ Layer weights are
2-d arrays.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1

Wi
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Notation

▶ Each hidden/output
neuron gets a
“dummy” input of 1.▶ 𝑗th node in 𝑖th layer
assigned a bias
weight of 𝑏(𝑖)𝑗▶ Biases for layer are
a vector: 𝑏⃗(𝑖)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1e
K



Notation

▶ Typically, we will not
draw the weights.▶ We will not draw the
dummy input, too,
but it is there.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑**



Example

𝑥1
𝑥2

∑
∑
∑

∑
𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4)𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇
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Example

𝑥1
𝑥2

∑
∑
∑
∑

∑
∑ ∑

𝑊 (1) = (2 −1 −3 04 5 −7 2) 𝑊 (2) = ( 1 2−4 3−6 −23 4 ) 𝑊 (3) = (−1 5)𝑏⃗(1) = (3, 6, −2, −2)𝑇 𝑏⃗(2) = (−4, 0)𝑇 𝑏⃗(3) = (1)𝑇



Evaluation▶ These are “fully-connected, feed-forward”
networks with one output.▶ They are functions 𝐻( ⃗𝑥) ∶ ℝ𝑑 → ℝ1▶ To evaluate 𝐻( ⃗𝑥), compute result of layer 𝑖, use
as inputs for layer 𝑖 + 1.



Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇
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Evaluation as Matrix Multiplication▶ Let 𝑧(𝑖)𝑗 be the output of node 𝑗 in layer 𝑖.▶ Make a vector of these outputs: ⃗𝑧(𝑖) = (𝑧(𝑖)1 , 𝑧(𝑖)2 , …)𝑇▶ Observe that ⃗𝑧(𝑖) = [𝑊 (𝑖)]𝑇 ⃗𝑧(𝑖−1) + 𝑏⃗(𝑖)



Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇



Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)( ⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)( ⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑



NNs as Function Composition▶ The full NN is a composition of layer functions.

𝑥1
𝑥2

∑
∑
∑

∑
𝐻( ⃗𝑥) = 𝐻(2)(𝐻(1)( ⃗𝑥)) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1))⏟⏟⏟⏟⏟⏟⏟⃗𝑧(1) +𝑏⃗(2)



NNs as Function Composition▶ In general, if there 𝑘 hidden layers:𝐻( ⃗𝑥) = 𝐻(𝑘+1) (⋯𝐻(3) (𝐻(2) (𝐻(1)( ⃗𝑥))) ⋯)



Exercise
Show that:𝐻( ⃗𝑥) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1)) + 𝑏⃗(2) = 𝑤⃗ ⋅ Aug( ⃗𝑥)
for some appropriately-defined vector 𝑤⃗.



Result▶ The composition of linear functions is again a
linear function.▶ The NNs we have seen so far are all equivalent to
linear models!▶ For NNs to be more useful, we will need to add
non-linearity.



Activations▶ So far, the output of a neuron has been a linear
function of its inputs:𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …▶ Can be arbitrarily large or small.▶ But real neurons are activated non-linearly.▶ E.g., saturation.



Idea▶ To add nonlinearity, we will apply a non-linear
activation function 𝑔 to the output of each
hidden neuron (and sometimes the output
neuron).



Linear Activation▶ The linear activation is what we’ve been using.

𝜎(𝑧) = 𝑧 z



Sigmoid Activation▶ The sigmoid models saturation in many natural
processes.

𝜎(𝑧) = 11 + 𝑒−𝑧 z



ReLU Activation▶ The Rectified Linear Unit (ReLU) tends to work
better in practice.

𝑔(𝑧) = max{0, 𝑧} z



Notation

𝑥1
𝑥2
𝑥3

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3
𝑧(1)4 𝑎(1)4

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2
𝑧(2)3 𝑎(2)3

𝑧(3)1 𝑎(3)1

▶ 𝑧(𝑖)𝑗 is the linear activation before 𝑔 is applied.▶ 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)) is the actual output of the neuron.



Example

𝑥1
𝑥2

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1
▶ 𝑔 = ReLU▶ Linear output▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑎(1)1 =▶ 𝑧(1)2 =▶ 𝑎(1)2 =▶ 𝑧(1)3 =▶ 𝑎(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = ( 32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇



Output Activations▶ The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.▶ In classification, sigmoid activation makes sense.▶ In regression, linear activation makes sense.



Main Idea
A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.
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Demo



Feature Map▶ We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map). 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)▶ These basis functions are fixed before learning.▶ Downside: we have to choose 𝜙⃗ somehow.



Learning a Feature Map▶ Interpretation: The hidden layers of a neural
network learn a feature map.



Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)( ⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)( ⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑



Each Layer is a Function▶ The hidden layer performs a feature map from ℝ2 to ℝ3.▶ The output layer makes a prediction in ℝ3.▶ Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

𝑥1
𝑥2

∑
∑
∑

∑



Demo▶ Train a deep network to classify the data below.▶ Hidden layers will learn a new feature map that
makes the data linearly separable.



Demo▶ We’ll use three hidden
layers, with last having
two neurons.▶ We can see this new
representation!▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.



Learning a New Representation
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Deep Learning▶ The NN has learned a new representation in
which the data is easily classified.


