
Lecture 12 | Part 1

Radial Basis Functions

Recap▶ Linear prediction functions are limited.▶ Idea: transform the data to a new space where
prediction is “easier”.▶ To do so, we used basis functions.

Overview: Feature Mapping
1. Start with data in original space, ℝ𝑑.
2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′
3. Map each data point to feature space ℝ𝑑′:⃗𝑥 ↦ (𝜑1(⃗𝑥), 𝜑2(⃗𝑥), … , 𝜑𝑑′(⃗𝑥))𝑡
4. Fit linear prediction function in new space:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜑1(⃗𝑥) + 𝑤2𝜑2(⃗𝑥)

I

2

E

4

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜑1(⃗𝑥) + 𝑤2𝜑2(⃗𝑥)
𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0

Generic Basis Functions▶ The basis functions we used before were
engineered using domain knowledge.▶ They were specific to the problem at hand.▶ Very manual process!▶ Now: features that work for many problems.

Example

Gaussian Basis Functions

▶ A common choice: Gaussian
basis functions:𝜑(⃗𝑥; 𝜇⃗, 𝜎) = 𝑒−‖ ⃗𝑥−𝜇⃗‖2/𝜎2▶ 𝜇⃗ is the center.▶ 𝜎 controls the “width”

Gaussian Basis Function▶ If ⃗𝑥 is close to 𝜇⃗, 𝜑(⃗𝑥; 𝜇⃗, 𝜎) is large.▶ If ⃗𝑥 is far from 𝜇⃗, 𝜑(⃗𝑥; 𝜇⃗, 𝜎) is small.▶ Intuition: 𝜑 measures how “similar” ⃗𝑥 is to 𝜇⃗.▶ Assumes that “similar” objects have close feature
vectors.

New Representation▶ Pick number of new features, 𝑑′.▶ Pick centers for Gaussians 𝜇⃗(1), … , 𝜇⃗(2), ..., 𝜇⃗(𝑑′)▶ Pick widths: 𝜎1, 𝜎2, … , 𝜎𝑑′ (usually all the same)▶ Define 𝑖th basis function:𝜑𝑖(⃗𝑥) = 𝑒−‖ ⃗𝑥−𝜇⃗(𝑖)‖2/𝜎2𝑖

New Representation▶ For any feature vector ⃗𝑥 ∈ ℝ𝑑, map to vector𝜑⃗(⃗𝑥) ∈ ℝ𝑑′.▶ 𝜑1: “similarity” of ⃗𝑥 to 𝜇⃗(1)▶ 𝜑2: “similarity” of ⃗𝑥 to 𝜇⃗(2)▶ …▶ 𝜑𝑑′: “similarity” of ⃗𝑥 to 𝜇⃗(𝑑′)▶ Train linear classifier in this new representation.▶ E.g., by minimizing expected square loss.

Exercise
Howmany Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?

Placement
x +(y,(x),4(*)

I

①, ->
O

ona de

Feature Space
H(3) =w.tw, 4,(X) +

WeY(*)

X

"I

Prediction Function▶ 𝐻(⃗𝑥) is a sum of Gaussians:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜑1(⃗𝑥) + 𝑤2𝜑2(⃗𝑥) + …= 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2 + …
e

Exercise
What does the surface of the prediction function
look like?

Hint: what does the sumof 1-d Gaussians look like?

Prediction Function Surface

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2

An Interpretation▶ Basis function 𝜑𝑖 makes a “bump” in surface of 𝐻▶ 𝑤𝑖 adjusts the “prominance” of this bumpOaussiedi

Decision Boundary
H(x)

=0

More Features▶ By increasing number of basis functions, we can
make more complex decision surfaces.

X

X I

X X

I

Another Example

x*
* Xit

⑧ X

X Y

X

**x*
X

Prediction Surface

Decision Boundary

Radial Basis Functions▶ Gaussians are examples of radial basis functions.▶ Each basis function has a center, ⃗𝑐.▶ Value depends only on distance from center:𝜑(⃗𝑥; ⃗𝑐) = 𝑓(‖ ⃗𝑥 − ⃗𝑐‖)

Another Radial Basis Function▶ Multiquadric: 𝜑(⃗𝑥; ⃗𝑐) = √𝜎2 + ‖ ⃗𝑥 − ⃗𝑐‖/𝜎

Lecture 12 | Part 2

Radial Basis Function Networks

Recap
1. Choose basis functions, 𝜑1, … , 𝜑𝑑′
2. Transform data to new representation:⃗𝑥 ↦ (𝜑1(⃗𝑥), 𝜑2(⃗𝑥), … , 𝜑𝑑′(⃗𝑥))𝑇
3. Train a linear classifier in this new space:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜑1(⃗𝑥) + 𝑤2𝜑2(⃗𝑥) + … + 𝑤𝑑′𝜑𝑑′(⃗𝑥)

"

The Model▶ The 𝜑 are basis functions.𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0 𝐻(⃗𝑥) = 𝑤0+𝑤1𝜑1(⃗𝑥)+𝑤2𝜑2(⃗𝑥)

Radial Basis Function Networks

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0 If the basis functions are

radial basis functions, we
call this a radial basis
function (RBF) network.

Training▶ An RBF network has these parameters:▶ the parameters of each individual basis function:▶ 𝜇⃗𝑖 (the center)▶ possibly others (e.g., 𝜎)▶ 𝑤𝑖: the weights associated to each “new” feature▶ How do we choose the parameters?

First Idea▶ We can include all parameters in one big cost
function, optimize.▶ The cost function will generally be complicated,
non-convex and thus hard to optimize.

2 (Wo,w., ...,wa,M",l, ..., 0d)

Another Idea▶ Break the process into two steps:

1. Find the parameters of the RBFs somehow.▶ Some optimization procedure, clustering, randomly, ...

2. Having fixed those parameters, optimize the 𝑤’s.▶ Linear; easier to optimize.

Training

𝑥1
𝑥2
⋮𝑥𝑑

𝜑1
𝜑2
⋮𝜑𝑑′

∑
1𝑤1𝑤2𝑤𝑑′
𝑤0

Training an RBF Network
1. Choose the form of the RBF, how many.▶ E.g., 𝑘 Gaussian RBFs, 𝜑1, … , 𝜑𝑘.
2. Pick the parameters of the RBFs somehow.

3. Create new data set by mapping⃗𝑥 ↦ (𝜑1(⃗𝑥), … , 𝜑𝑘(⃗𝑥))𝑇
4. Train a linear predictor 𝐻𝑓 on new data set▶ That is, in feature space.

9

2

3

2

Making Predictions
1. Given a point ⃗𝑥, map it to feature space:⃗𝑥 ↦ (𝜑1(⃗𝑥), … , 𝜑𝑘(⃗𝑥))𝑇
2. Evaluate the trained linear predictor 𝐻𝑓 in
feature space

1.

2.

Lecture 12 | Part 3

Choosing RBF Locations

Recap▶ We map data to a new representation by first
choosing basis functions.▶ Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.▶ Requires choosing center for each basis function.

Prediction Function

▶ Our prediction function 𝐻
is a surface that is made
up of Gaussian “bumps”.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2

Choosing Centers

▶ Place the centers where
the value of the prediction
function should be
controlled.▶ Intuitively: place centers
where the data is.

X

Approaches
1. Every data point as a center

2. Randomly choose centers

3. Clustering

1.

2.

3.

Approach #1: Every Data Point as a
Center

9:x
+(4,(x),

en(x))
N
xxx

Dimensionality▶ We’ll have 𝑛 basis functions – one for each point.▶ That means we’ll have 𝑛 features.▶ Each feature vector 𝜙⃗(⃗𝑥) ∈ ℝ𝑛.𝜙⃗(⃗𝑥) = (𝜙1(⃗𝑥), 𝜙2(⃗𝑥), … , 𝜙𝑛(⃗𝑥))𝑇

Problems

▶ This causes problems.▶ First: more likely to
overfit.▶ Second: computationally
expensive

Computational Cost▶ Suppose feature matrix 𝑋 is 𝑛 × 𝑑▶ 𝑛 points in 𝑑 dimensions▶ Time complexity of solving 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦 is Θ(𝑛𝑑2)▶ Usually 𝑑 ≪ 𝑛. But if 𝑑 = 𝑛, this is Θ(𝑛3).▶ Not great! If 𝑛 ≈ 10, 000, then takes > 10 minutes.
HG-Ziaee*

ack(x,y(z)
!

Approach #2: A Random Sample▶ Idea: randomly choose 𝑘 data points as centers.
X xX

X
X

*
X

x
X

xyt
X

*

Problem▶ May undersample/oversample a region.▶ More advanced sampling approaches exist.

Approach #3: Clustering▶ Group data points into clusters.▶ Cluster centers are good places for RBFs.▶ For example, use 𝑘-means clustering to pick 𝑘
centers.

Lecture 12 | Part 4

Neural Networks

Beyond RBFs▶ When training RBFs, we fixed the basis functions
before training the weights.▶ Representation learning was decoupled from
learning the prediction function.▶ Now: learn representation and prediction
function together.

Linear Models

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0

Generalizing Linear Models▶ The brain is a network of neurons.▶ The output of a neuron is used as an input to
another.▶ Idea: chain together multiple “neurons” into a
neural network.

Neural Network1 (One Hidden Layer)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑊(1)01𝑊(1)02𝑊(1)03 𝑊(2)01

1Specifically, a fully-connected, feed-forward neural network

Architecture▶ Neurons are organized into layers.▶ Input layer, output layer, and hidden layers.▶ Number of cells in input layer determined by
dimensionality of input feature vectors.▶ Number of cells in hidden layer(s) is determined
by you.▶ Output layer can have >1 neuron.

Architecture▶ Can have more than one hidden layer.▶ A network is “deep” if it has >1 hidden layer.▶ Hidden layers can have different number of
neurons.

Neural Network (Two Hidden Layers)𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮

∑
∑
∑
⋮ ∑-) fea

Network Weights▶ A neural network is a type of function.▶ Like a linear model, a NN is totally determined
by its weights.▶ But there are often many more weights to learn!

--

v
-

Notation

▶ Input is layer #0.▶ 𝑊 (𝑖)𝑗𝑘 denotes weight
of connection
between neuron 𝑗 in
layer (𝑖 − 1) and
neuron 𝑘 in layer 𝑖▶ Layer weights are
2-d arrays.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1

Wi
⑧ I 2

Notation

▶ Each hidden/output
neuron gets a
“dummy” input of 1.▶ 𝑗th node in 𝑖th layer
assigned a bias
weight of 𝑏(𝑖)𝑗▶ Biases for layer are
a vector: 𝑏⃗(𝑖)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1e
K

Notation

▶ Typically, we will not
draw the weights.▶ We will not draw the
dummy input, too,
but it is there.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑**

Example

𝑥1
𝑥2

∑
∑
∑

∑
𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4)𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

⑰

A
-

Example

𝑥1
𝑥2

∑
∑
∑
∑

∑
∑ ∑

𝑊 (1) = (2 −1 −3 04 5 −7 2) 𝑊 (2) = (1 2−4 3−6 −23 4) 𝑊 (3) = (−1 5)𝑏⃗(1) = (3, 6, −2, −2)𝑇 𝑏⃗(2) = (−4, 0)𝑇 𝑏⃗(3) = (1)𝑇

Evaluation▶ These are “fully-connected, feed-forward”
networks with one output.▶ They are functions 𝐻(⃗𝑥) ∶ ℝ𝑑 → ℝ1▶ To evaluate 𝐻(⃗𝑥), compute result of layer 𝑖, use
as inputs for layer 𝑖 + 1.

Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

-E
E-

2 (17 (3)(z) +
4
zu e3 -1
I - ⑦?

(-1)(4)+3
=5

O
I (3)(-)+(-1)(5)

I
-10 + (-z) = -10

(-2)+(-2)
- I 2

-4
= -4

-2i (5) (3)t
-I (10)(z) +(-4))-4)

+ - 4

=15-20+16
- 4 =x

Evaluation as Matrix Multiplication▶ Let 𝑧(𝑖)𝑗 be the output of node 𝑗 in layer 𝑖.▶ Make a vector of these outputs: ⃗𝑧(𝑖) = (𝑧(𝑖)1 , 𝑧(𝑖)2 , …)𝑇▶ Observe that ⃗𝑧(𝑖) = [𝑊 (𝑖)]𝑇 ⃗𝑧(𝑖−1) + 𝑏⃗(𝑖)

Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑

NNs as Function Composition▶ The full NN is a composition of layer functions.

𝑥1
𝑥2

∑
∑
∑

∑
𝐻(⃗𝑥) = 𝐻(2)(𝐻(1)(⃗𝑥)) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1))⏟⏟⏟⏟⏟⏟⏟⃗𝑧(1) +𝑏⃗(2)

NNs as Function Composition▶ In general, if there 𝑘 hidden layers:𝐻(⃗𝑥) = 𝐻(𝑘+1) (⋯𝐻(3) (𝐻(2) (𝐻(1)(⃗𝑥))) ⋯)

Exercise
Show that:𝐻(⃗𝑥) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1)) + 𝑏⃗(2) = 𝑤⃗ ⋅ Aug(⃗𝑥)
for some appropriately-defined vector 𝑤⃗.

Result▶ The composition of linear functions is again a
linear function.▶ The NNs we have seen so far are all equivalent to
linear models!▶ For NNs to be more useful, we will need to add
non-linearity.

Activations▶ So far, the output of a neuron has been a linear
function of its inputs:𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …▶ Can be arbitrarily large or small.▶ But real neurons are activated non-linearly.▶ E.g., saturation.

Idea▶ To add nonlinearity, we will apply a non-linear
activation function 𝑔 to the output of each
hidden neuron (and sometimes the output
neuron).

Linear Activation▶ The linear activation is what we’ve been using.

𝜎(𝑧) = 𝑧 z

Sigmoid Activation▶ The sigmoid models saturation in many natural
processes.

𝜎(𝑧) = 11 + 𝑒−𝑧 z

ReLU Activation▶ The Rectified Linear Unit (ReLU) tends to work
better in practice.

𝑔(𝑧) = max{0, 𝑧} z

Notation

𝑥1
𝑥2
𝑥3

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3
𝑧(1)4 𝑎(1)4

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2
𝑧(2)3 𝑎(2)3

𝑧(3)1 𝑎(3)1

▶ 𝑧(𝑖)𝑗 is the linear activation before 𝑔 is applied.▶ 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)) is the actual output of the neuron.

Example

𝑥1
𝑥2

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1
▶ 𝑔 = ReLU▶ Linear output▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑎(1)1 =▶ 𝑧(1)2 =▶ 𝑎(1)2 =▶ 𝑧(1)3 =▶ 𝑎(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

Output Activations▶ The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.▶ In classification, sigmoid activation makes sense.▶ In regression, linear activation makes sense.

Main Idea
A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.

Lecture 12 | Part 5

Demo

Feature Map▶ We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map). 𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + … + 𝑤𝑘𝜙𝑘(⃗𝑥)▶ These basis functions are fixed before learning.▶ Downside: we have to choose 𝜙⃗ somehow.

Learning a Feature Map▶ Interpretation: The hidden layers of a neural
network learn a feature map.

Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑

Each Layer is a Function▶ The hidden layer performs a feature map from ℝ2 to ℝ3.▶ The output layer makes a prediction in ℝ3.▶ Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

𝑥1
𝑥2

∑
∑
∑

∑

Demo▶ Train a deep network to classify the data below.▶ Hidden layers will learn a new feature map that
makes the data linearly separable.

Demo▶ We’ll use three hidden
layers, with last having
two neurons.▶ We can see this new
representation!▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Deep Learning▶ The NN has learned a new representation in
which the data is easily classified.

