Representation Learning

Lecture 12 | Part 1

Radial Basis Functions

Recap

- Linear prediction functions are limited.
- Idea: transform the data to a new space where prediction is "easier".
- ▶ To do so, we used **basis functions**.

Overview: Feature Mapping

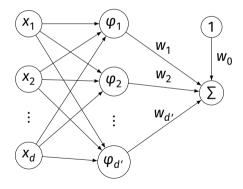
1. Start with data in original space, \mathbb{R}^d .

2. Choose some basis functions, $\varphi_1, \varphi_2, ..., \varphi_{d'}$

Map each data point to feature space $\mathbb{R}^{d'}$: $\vec{x} \mapsto (\varphi_1(\vec{x}), \varphi_2(\vec{x}), ..., \varphi_{d'}(\vec{x}))^t$

Fit linear prediction function in new space: $H(\vec{x}) = w_0 + w_1\varphi_1(\vec{x}) + w_2\varphi_2(\vec{x})$

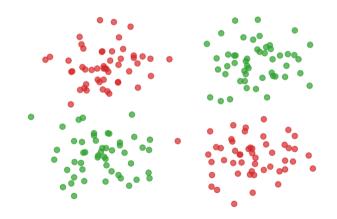
$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x})$$



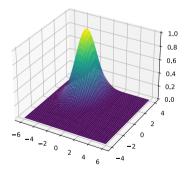
Generic Basis Functions

- The basis functions we used before were engineered using domain knowledge.
- They were specific to the problem at hand.
- Very manual process!
- **Now:** features that work for many problems.

Example



Gaussian Basis Functions



A common choice: Gaussian basis functions:

$$\varphi(\vec{x};\vec{\mu},\sigma)=e^{-\|\vec{x}-\vec{\mu}\|^2/\sigma^2}$$

 \vdash $\vec{\mu}$ is the center.

 \triangleright σ controls the "width"

Gaussian Basis Function

- If \vec{x} is close to $\vec{\mu}$, $\varphi(\vec{x}; \vec{\mu}, \sigma)$ is large.
- If \vec{x} is far from $\vec{\mu}$, $\varphi(\vec{x}; \vec{\mu}, \sigma)$ is small.
- Intuition: φ measures how "similar" x is to μ.
 Assumes that "similar" objects have close feature vectors.

New Representation

- ▶ Pick number of new features, *d*′.
- ▶ Pick centers for Gaussians $\vec{\mu}^{(1)}, ..., \vec{\mu}^{(2)}, ..., \vec{\mu}^{(d')}$
- ▶ Pick widths: $\sigma_1, \sigma_2, ..., \sigma_{d'}$ (usually all the same)
- Define *i*th basis function:

$$\varphi_i(\vec{x}) = e^{-\|\vec{x} - \vec{\mu}^{(i)}\|^2 / \sigma_i^2}$$

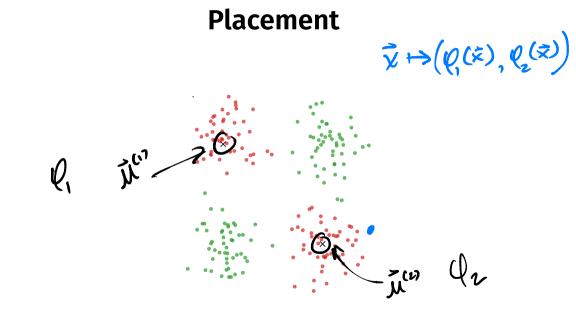
New Representation

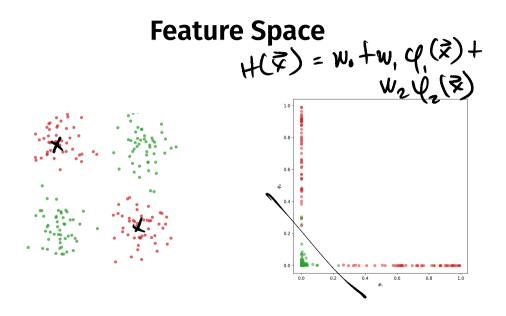
- For any feature vector x ∈ ℝ^d, map to vector φ(x) ∈ ℝ^{d'}.
 φ₁: "similarity" of x to μ⁽¹⁾
 φ₂: "similarity" of x to μ⁽²⁾
 ...
 φ_{d'}: "similarity" of x to μ^(d')
- Train linear classifier in this new representation.
 E.g., by minimizing expected square loss.

Exercise

How many Gaussian basis functions would you use, and where would you place them to create a new representation for this data?







Prediction Function

• $H(\vec{x})$ is a sum of Gaussians:

$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x}) + \dots$$

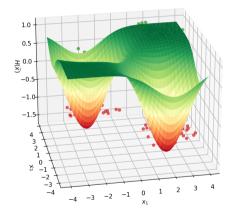
= $w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2 / \sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2 / \sigma^2} + \dots$

Exercise

What does the surface of the prediction function look like?

Hint: what does the sum of 1-d Gaussians look like?

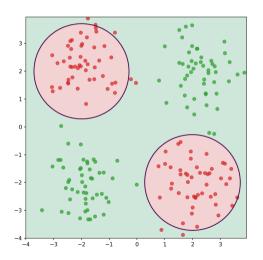
Prediction Function Surface



$$H(\vec{x}) = w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2 / \sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2 / \sigma^2}$$

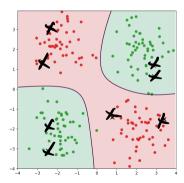
- An Interpretation (aussian (aussian))Basis function φ_i makes a "bump" in surface of H
- ▶ w; adjusts the "prominance" of this bump

Decision Boundary

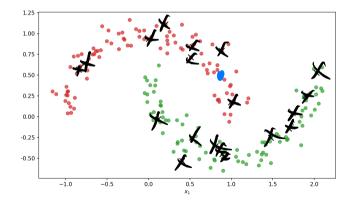


More Features

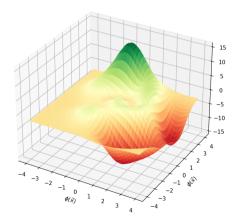
By increasing number of basis functions, we can make more complex decision surfaces.



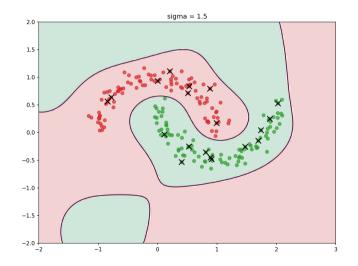
Another Example



Prediction Surface



Decision Boundary



Radial Basis Functions

- Gaussians are examples of radial basis functions.
- Each basis function has a **center**, *c*.
- Value depends only on distance from center:

$$\varphi(\vec{x};\vec{c})=f(\|\vec{x}-\vec{c}\|)$$

Another Radial Basis Function

Multiquadric:
$$\varphi(\vec{x}; \vec{c}) = \sqrt{\sigma^2 + \|\vec{x} - \vec{c}\|} / \sigma$$

Representation Learning

Lecture 12 | Part 2

Radial Basis Function Networks

Recap

1. Choose basis functions, $\varphi_1, \dots, \varphi_{d'}$

2. Transform data to new representation:

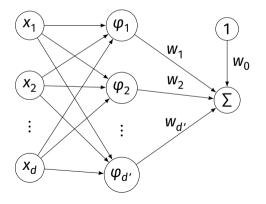
$$\vec{x} \mapsto (\varphi_1(\vec{x}), \varphi_2(\vec{x}), \dots, \varphi_{d'}(\vec{x}))^T$$

3. Train a linear classifier in this new space:

$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x}) + \ldots + w_{d'} \varphi_{d'}(\vec{x})$$

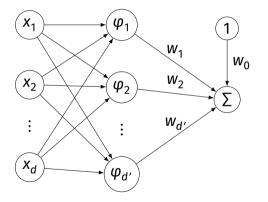
The Model

• The φ are **basis functions**.



$$H(\vec{x})=w_0+w_1\varphi_1(\vec{x})+w_2\varphi_2(\vec{x})$$

Radial Basis Function Networks



If the basis functions are radial basis functions, we call this a radial basis function (RBF) network.

Training

- An RBF network has these parameters:
 the parameters of each individual basis function:
 μ_i (the center)
 possibly others (e.g., σ)
 w_i: the weights associated to each "new" feature
- How do we choose the parameters?

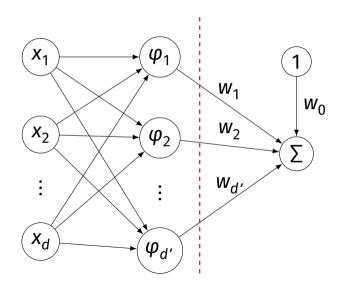
$C(w_{\bullet}, w_{\bullet}, \dots, w_{a}, \mathcal{M}^{o}, \mathcal{M}^{o}, \dots, \sigma_{a})$ First Idea

- We can include all parameters in one big cost function, optimize.
- The cost function will generally be complicated, non-convex and thus hard to optimize.

Another Idea

- Break the process into two steps:
- Find the parameters of the RBFs somehow.
 Some optimization procedure, clustering, randomly, ...
- 2. Having fixed those parameters, optimize the w's.
- Linear; easier to optimize.

Training



Training an RBF Network

↓ Choose the form of the RBF, how many. ► E.g., *k* Gaussian RBFs, $φ_1, ..., φ_k$.

Pick the parameters of the RBFs somehow.

- β. Create new data set by mapping $\vec{x} \mapsto (\varphi_1(\vec{x}), ..., \varphi_k(\vec{x}))^T$
- Train a linear predictor H_f on new data set
 That is, in feature space.

Making Predictions

- **1.** Given a point \vec{x} , map it to feature space: $\vec{x} \mapsto (\varphi_1(\vec{x}), \dots, \varphi_k(\vec{x}))^T$
- Evaluate the trained linear predictor H_f in feature space

DSC 140B Representation Learning

Lecture 12 | Part 3

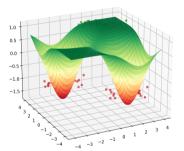
Choosing RBF Locations

Recap

- We map data to a new representation by first choosing **basis functions**.
- Radial Basis Functions (RBFs), such as Gaussians, are a popular choice.
- Requires choosing center for each basis function.

Prediction Function

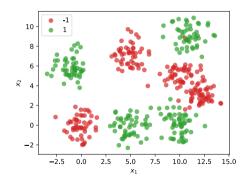
Our prediction function H is a surface that is made up of Gaussian "bumps".



$$H(\vec{x}) = w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2 / \sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2 / \sigma^2}$$

Choosing Centers ×

- Place the centers where the value of the prediction function should be controlled.
- Intuitively: place centers where the data is.

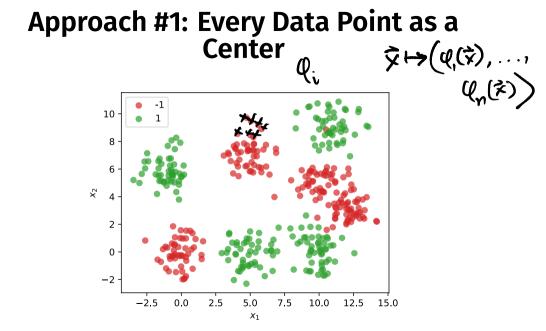


Approaches

1. Every data point as a center

2. Randomly choose centers

3. Clustering



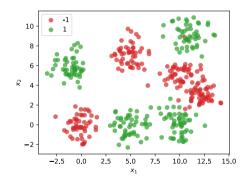
Dimensionality

- ▶ We'll have *n* basis functions one for each point.
- ▶ That means we'll have *n* features.
- ► Each feature vector $\vec{\phi}(\vec{x}) \in \mathbb{R}^n$.

$$\vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}), \dots, \phi_n(\vec{x}))^T$$

Problems

- This causes problems.
- First: more likely to overfit.
- Second: computationally expensive



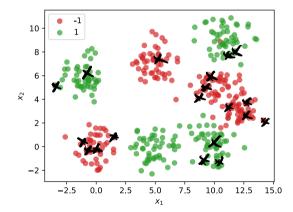
Computational Cost

Suppose feature matrix X is n × df(n) = 2 a k (x, x^{co})
 n points in d dimensions
 Time complexity of solving vTvt

- ► Time complexity of solving $X^T X \vec{w} = X^T \vec{v}$ is $\Theta(nd^2)$
- Usually $d \ll n$. But if d = n, this is $\Theta(n^3)$.
- Not great! If $n \approx 10,000$, then takes > 10 minutes.

Approach #2: A Random Sample

Idea: randomly choose k data points as centers.



Problem

- May undersample/oversample a region.
- More advanced sampling approaches exist.

Approach #3: Clustering

- Group data points into clusters.
- Cluster centers are good places for RBFs.
- For example, use k-means clustering to pick k centers.

Representation Learning

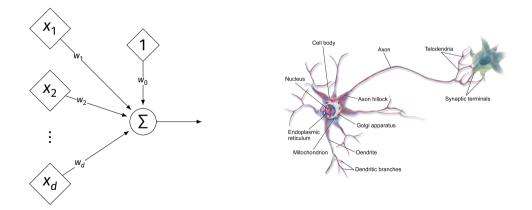
Lecture 12 | Part 4

Beyond RBFs

- When training RBFs, we fixed the basis functions before training the weights.
- Representation learning was decoupled from learning the prediction function.
- Now: learn representation and prediction function together.

Linear Models

$$H(\vec{x}) = W_0 + W_1 X_1 + \dots + W_d X_d$$

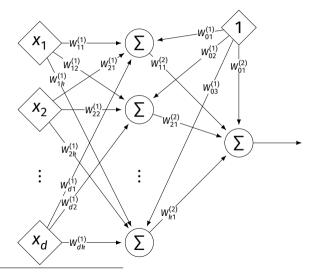


Generalizing Linear Models

► The brain is a **network** of neurons.

- The output of a neuron is used as an input to another.
- Idea: chain together multiple "neurons" into a neural network.

Neural Network¹ (One Hidden Layer)



¹Specifically, a fully-connected, feed-forward neural network

Architecture

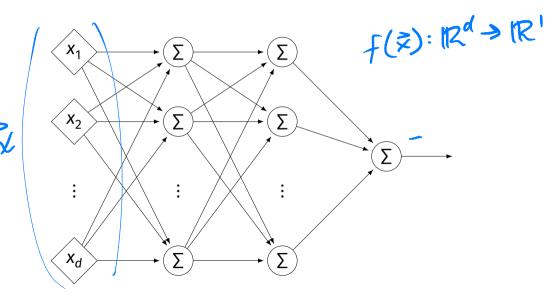
- Neurons are organized into layers.
 Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

Can have more than one hidden layer.
 A network is "deep" if it has >1 hidden layer.

Hidden layers can have different number of neurons.

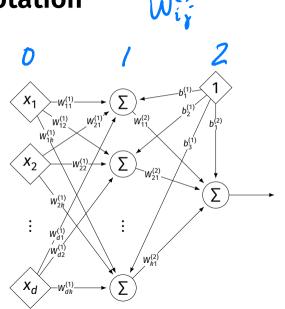
Neural Network (Two Hidden Layers)



- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

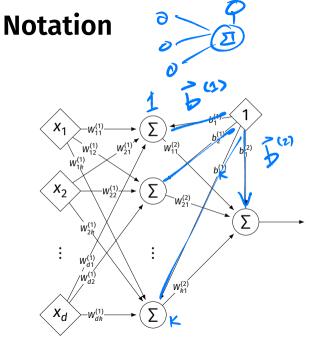
Notation

- Input is layer #0.
- W⁽ⁱ⁾_{jk} denotes weight of connection between neuron j in layer (i – 1) and neuron k in layer i
- Layer weights are 2-d arrays.



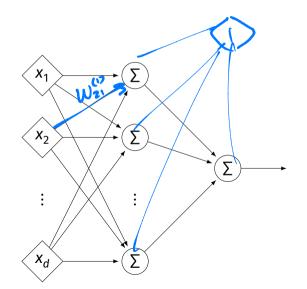
Each hidden/output neuron gets a "dummy" input of 1.

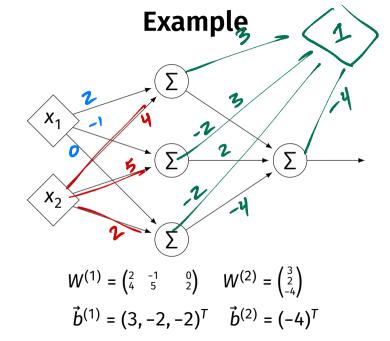
- *j*th node in *i*th layer assigned a bias weight of b⁽ⁱ⁾_j
- Biases for layer are a vector: *b*⁽ⁱ⁾



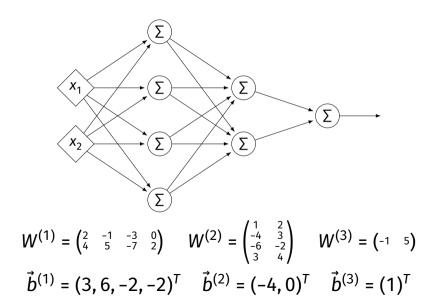
Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.



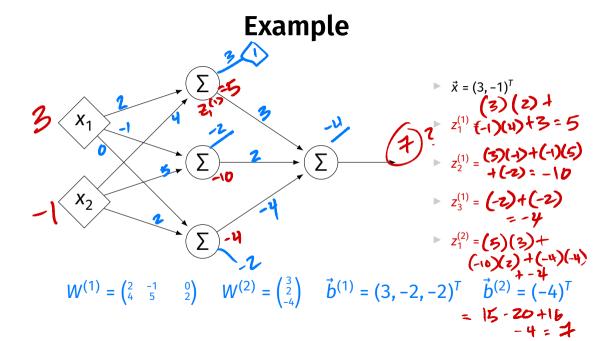


Example



Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- ▶ They are functions $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate $H(\vec{x})$, compute result of layer *i*, use as inputs for layer *i* + 1.



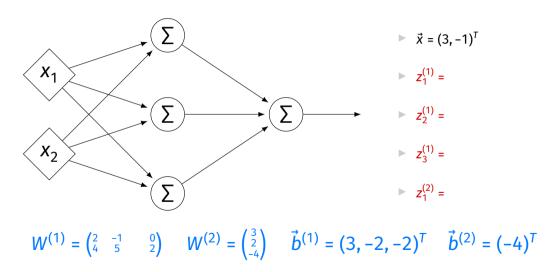
Evaluation as Matrix Multiplication

• Let $z_j^{(i)}$ be the output of node *j* in layer *i*.

• Make a vector of these outputs: $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$

• Observe that
$$\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$$

Example



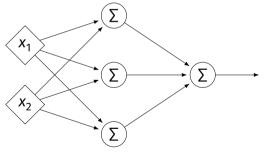
Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{z} + \vec{b}^{(1)}$$

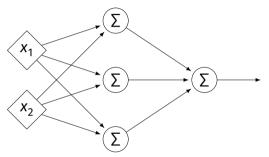
$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = \begin{bmatrix} W^{(2)} \end{bmatrix}^T \vec{z} + \vec{b}^{(2)}$$
$$H^{(2)} : \mathbb{R}^3 \to \mathbb{R}^1$$



NNs as Function Composition

The full NN is a composition of layer functions.



$$H(\vec{x}) = H^{(2)}(H^{(1)}(\vec{x})) = \left[W^{(2)}\right]^T \underbrace{\left(\left[W^{(1)}\right]^T \vec{x} + \vec{b}^{(1)}\right)}_{\vec{z}^{(1)}} + \vec{b}^{(2)}$$

NNs as Function Composition

▶ In general, if there *k* hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left(\cdots H^{(3)} \left(H^{(2)} \left(H^{(1)}(\vec{x}) \right) \right) \cdots \right)$$

Exercise

Show that:

$$H(\vec{x}) = \left[W^{(2)}\right]^{T} \left(\left[W^{(1)}\right]^{T} \vec{x} + \vec{b}^{(1)}\right) + \vec{b}^{(2)} = \vec{w} \cdot \operatorname{Aug}(\vec{x})$$

for some appropriately-defined vector \vec{w} .

Result

- The composition of linear functions is again a linear function.
- The NNs we have seen so far are all equivalent to linear models!
- For NNs to be more useful, we will need to add non-linearity.

Activations

So far, the output of a neuron has been a linear function of its inputs:

 $W_0 + W_1 X_1 + W_2 X_2 + \dots$

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
 E.g., saturation.

Idea

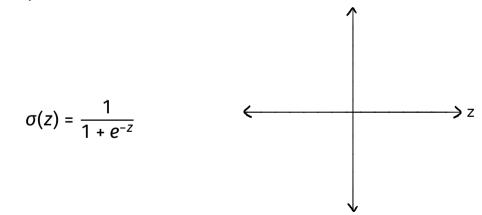
To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

Linear Activation

▶ The **linear** activation is what we've been using. ⇒z $\sigma(z) = z$

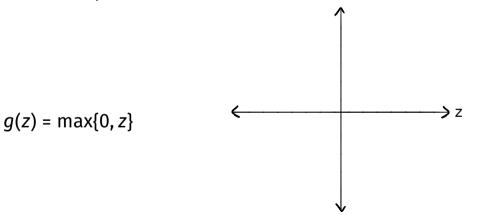
Sigmoid Activation

The sigmoid models saturation in many natural processes.

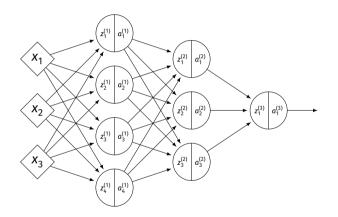


ReLU Activation

The Rectified Linear Unit (ReLU) tends to work better in practice.

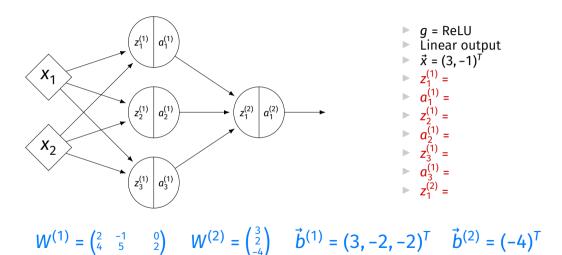


Notation



z_j⁽ⁱ⁾ is the linear activation before g is applied.
 a_j⁽ⁱ⁾ = g(z⁽ⁱ⁾) is the actual output of the neuron.

Example



Output Activations

- The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- ► In classification, **sigmoid** activation makes sense.
- ► In regression, **linear** activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

DSC 140B Representation Learning

Lecture 12 | Part 5

Demo

Feature Map

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + \dots + w_k \phi_k(\vec{x})$$

- These basis functions are fixed **before** learning.
- **Downside:** we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

Interpretation: The hidden layers of a neural network learn a feature map.

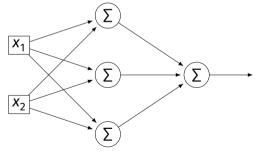
Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{z} + \vec{b}^{(1)}$$

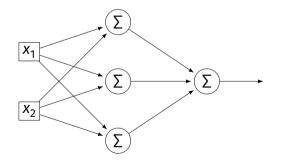
$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = \left[W^{(2)}\right]^T \vec{z} + \vec{b}^{(2)}$$
$$H^{(2)} : \mathbb{R}^3 \to \mathbb{R}^1$$



Each Layer is a Function

- ▶ The hidden layer performs a feature map from \mathbb{R}^2 to \mathbb{R}^3 .
- The output layer makes a prediction in \mathbb{R}^3 .
- Intuition: The feature map is learned so as to make the output layer's job "easier".

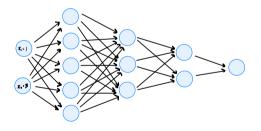


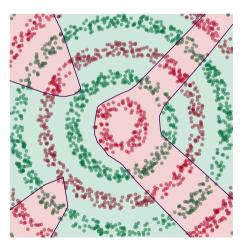
Demo

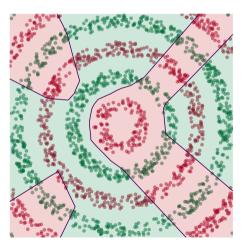
- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

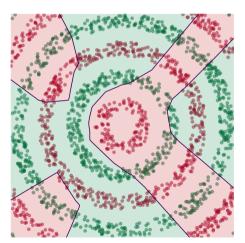
Demo

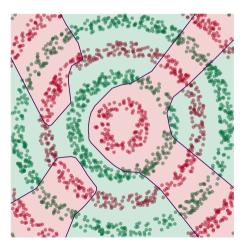
- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in x and see activations of last hidden layer.

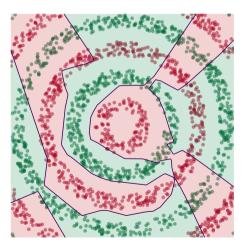


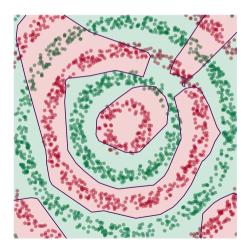


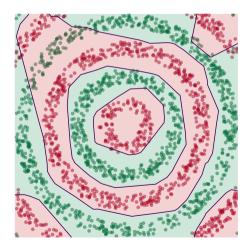


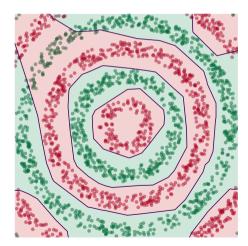


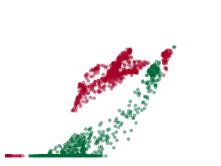


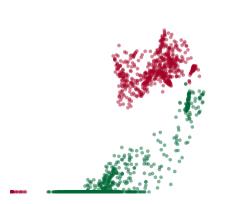


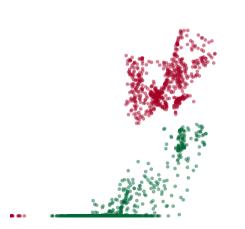


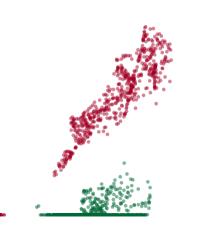












Deep Learning

The NN has learned a new representation in which the data is easily classified.