DEC $140 B$ Representation Learning Lecture $12 \mid$ Part 1
Radial Basis Functions

Recap

- Linear prediction functions are limited.
- Idea: transform the data to a new space where prediction is "easier".
- To do so, we used basis functions.

Overview: Feature Mapping

1. Start with data in original space, \mathbb{R}^{d}.
2. Choose some basis functions, $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d^{\prime}}$
3. Map each data point to feature space $\mathbb{R}^{d^{\prime}}$:

$$
\vec{x} \mapsto\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x}), \ldots, \varphi_{d^{\prime}}(\vec{x})\right)^{t}
$$

4. Fit linear prediction function in new space:

$$
H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})
$$

$$
H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})
$$

Generic Basis Functions

- The basis functions we used before were engineered using domain knowledge.
- They were specific to the problem at hand.
- Very manual process!
- Now: features that work for many problems.

Example

$$
\begin{aligned}
& 0
\end{aligned}
$$

Gaussian Basis Functions

- A common choice: Gaussian basis functions:

$$
\varphi(\vec{x} ; \vec{\mu}, \sigma)=e^{-\|\vec{x}-\vec{\mu}\|^{2} / \sigma^{2}}
$$

$>\vec{\mu}$ is the center.

- σ controls the "width"

Gaussian Basis Function

- If \vec{x} is close to $\vec{\mu}, \varphi(\vec{x} ; \vec{\mu}, \sigma)$ is large.
- If \vec{x} is far from $\vec{\mu}, \varphi(\vec{x} ; \vec{\mu}, \sigma)$ is small.
- Intuition: φ measures how "similar" \vec{x} is to $\vec{\mu}$.
- Assumes that "similar" objects have close feature vectors.

New Representation

- Pick number of new features, d^{\prime}.
- Pick centers for Gaussians $\vec{\mu}^{(1)}, \ldots, \vec{\mu}^{(2)}, \ldots, \vec{\mu}^{\left(d^{\prime}\right)}$
- Pick widths: $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d^{\prime}}$ (usually all the same)
- Define ith basis function:

$$
\varphi_{i}(\vec{x})=e^{-\left\|\vec{x}-\tilde{\mu}^{(i)}\right\|^{2} / \sigma_{i}^{2}}
$$

New Representation

- For any feature vector $\vec{x} \in \mathbb{R}^{d}$, map to vector $\vec{\varphi}(\vec{x}) \in \mathbb{R}^{d^{\prime}}$.
φ_{1} : "similarity" of \vec{x} to $\vec{\mu}^{(1)}$
- φ_{2} : "similarity" of \vec{x} to $\vec{\mu}^{(2)}$
- $\varphi_{d^{\prime}}:$ "similarity" of \vec{x} to $\vec{\mu}^{\left(d^{\prime}\right)}$
- Train linear classifier in this new representation.
- E.g., by minimizing expected square loss.

Exercise

How many Gaussian basis functions would you use, and where would you place them to create a new representation for this data?

Placement

Feature Space

Prediction Function

- $H(\vec{x})$ is a sum of Gaussians:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})+\ldots \\
& =w_{0}+w_{1} e^{-\left\|\vec{x}-\mu_{1}\right\|^{2} / \sigma^{2}}+w_{2} e^{-\left\|\vec{x}-\vec{\mu}_{2}\right\|^{2} / \sigma^{2}}+\ldots .
\end{aligned}
$$

Exercise

What does the surface of the prediction function look like?

Hint: what does the sum of 1-d Gaussians look like?

Prediction Function Surface

$$
H(\vec{x})=w_{0}+w_{1} e^{-\left\|\vec{x}-\vec{\mu}_{1}\right\|^{2} / \sigma^{2}}+w_{2} e^{-\left\|\vec{x}-\vec{\mu}_{2}\right\|^{2} / \sigma^{2}}
$$

An Interpretation

- Basis function φ_{i} makes a "bump" in surface of H > w_{i} adjusts the "prominance" of this bump

Decision Boundary

More Features

- By increasing number of basis functions, we can make more complex decision surfaces.

Another Example

Prediction Surface

Decision Boundary

Radial Basis Functions

- Gaussians are examples of radial basis functions.
- Each basis function has a center, \vec{c}.
- Value depends only on distance from center:

$$
\varphi(\vec{x} ; \vec{c})=f(\|\vec{x}-\vec{c}\|)
$$

Another Radial Basis Function

Multiquadric: $\varphi(\vec{x} ; \vec{c})=\sqrt{\sigma^{2}+\|\vec{x}-\vec{c}\|} / \sigma$

DEC $140 B$ Representation Learning Lecture $12 \mid$ Part 2
Radial Basis Function Network

Recap

Choose basis functions, $\varphi_{1}, \ldots, \varphi_{d^{\prime}}$
2. Transform data to new representation:

$$
\vec{x} \mapsto\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x}), \ldots, \varphi_{d^{\prime}}(\vec{x})\right)^{T}
$$

3. Train a linear classifier in this new space:

$$
H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})+\ldots+w_{d^{\prime}} \varphi_{d^{\prime}}(\vec{x})
$$

The Model

- The φ are basis functions.

$$
H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})
$$

Radial Basis Function Networks

If the basis functions are radial basis functions, we call this a radial basis function (RBF) network.

Training

- An RBF network has these parameters:
- the parameters of each individual basis function:
$\vec{\mu}_{i}$ (the center)
- possibly others (e.g., σ)
> w_{i} : the weights associated to each "new" feature
- How do we choose the parameters?

First Idea

- We can include all parameters in one big cost function, optimize.
- The cost function will generally be complicated, non-convex and thus hard to optimize.

Another Idea

- Break the process into two steps:

1. Find the parameters of the RBFs somehow.

- Some optimization procedure, clustering, randomly, ...

2. Having fixed those parameters, optimize the w's.

- Linear; easier to optimize.

Training

Training an RBF Network

1. Choose the form of the RBF, how many.

- E.g., k Gaussian RBFs, $\varphi_{1}, \ldots, \varphi_{k}$.

2. Pick the parameters of the RBFs somehow.
3. Create new data set by mapping $\vec{x} \mapsto\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{k}(\vec{x})\right)^{T}$
4. Train a linear predictor H_{f} on new data set

- That is, in feature space.

Making Predictions

1. Given a point \vec{x}, map it to feature space: $\vec{x} \mapsto\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{k}(\vec{x})\right)^{T}$
2. Evaluate the trained linear predictor H_{f} in feature space

DST $140 B$ Representation Learning Lecture 12 | Part 3
Choosing RBF Locations

Recap

- We map data to a new representation by first choosing basis functions.
- Radial Basis Functions (RBFs), such as Gaussians, are a popular choice.
\downarrow Requires choosing center for each basis function.

Prediction Function

- Our prediction function H is a surface that is made up of Gaussian "bumps".

$$
H(\vec{x})=w_{0}+w_{1} e^{-\left\|\vec{x}-\mu_{1}\right\|^{2} / \sigma^{2}}+w_{2} e^{-\left\|\vec{x}-\vec{\mu}_{2}\right\|^{2} / \sigma^{2}}
$$

Choosing Centers

- Place the centers where the value of the prediction function should be controlled.
- Intuitively: place centers where the data is.

Approaches

1. Every data point as a center
2. Randomly choose centers

Clustering

Approach \#1: Every Data Point as a Center

Dimensionality

- We'll have n basis functions - one for each point.
- That means we'll have n features.
- Each feature vector $\vec{\phi}(\vec{x}) \in \mathbb{R}^{n}$.

$$
\vec{\phi}(\vec{x})=\left(\phi_{1}(\vec{x}), \phi_{2}(\vec{x}), \ldots, \phi_{n}(\vec{x})\right)^{\top}
$$

Problems

- This causes problems.
- First: more likely to overfit.
- Second: computationally expensive

Computational Cost

- Suppose feature matrix X is $n \times d$
$\downarrow n$ points in d dimensions
- Time complexity of solving $X^{\top} X \vec{W}=X^{\top} \vec{y}$ is $\Theta\left(n d^{2}\right)$
- Usually $d \ll n$. But if $d=n$, this is $\Theta\left(n^{3}\right)$.
- Not great! If $n \approx 10,000$, then takes >10 minutes.

Approach \#2: A Random Sample

> Idea: randomly choose k data points as centers.

Problem

- May undersample/oversample a region.
- More advanced sampling approaches exist.

Approach \#3: Clustering

- Group data points into clusters.
- Cluster centers are good places for RBFs.
- For example, use k-means clustering to pick k centers.

$$
\text { DEC } 140 B
$$

Representation Learning Lecture $12 \mid$ Part 4
Neural Networks

Beyond RBFs

- When training RBFs, we fixed the basis functions before training the weights.
- Representation learning was decoupled from learning the prediction function.
- Now: learn representation and prediction function together.

Linear Models

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

Generalizing Linear Models

- The brain is a network of neurons.
- The output of a neuron is used as an input to another.
- Idea: chain together multiple "neurons" into a neural network.

Neural Network ${ }^{1}$ (One Hidden Layer)

${ }^{1}$ Specifically, a fully-connected, feed-forward neural network

Architecture

- Neurons are organized into layers.
- Input layer, output layer, and hidden layers.
\Rightarrow Number of cells in input layer determined by dimensionality of input feature vectors.
> Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

- Can have more than one hidden layer.
- A network is "deep" if it has >1 hidden layer.
- Hidden layers can have different number of neurons.

Neural Network (Two Hidden Layers)

Network Weights

- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

Notation

- Input is layer \#0.
- $W_{j k}^{(i)}$ denotes weight of connection between neuron j in layer ($i-1$) and neuron k in layer i
- Layer weights are 2-d arrays.

Notation

- Each hidden/output neuron gets a "dummy" input of 1.
- j th node in ith layer assigned a bias weight of $b_{j}^{(i)}$
- Biases for layer are a vector: $\vec{b}^{(i)}$

Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.

Example

Example

Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- They are functions $H(\vec{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$
- To evaluate $H(\vec{x})$, compute result of layer i, use as inputs for layer $i+1$.

Example

Evaluation as Matrix Multiplication

Let $z_{j}^{(i)}$ be the output of node j in layer i.

- Make a vector of these outputs: $z^{(i)}=\left(z_{1}^{(i)}, z_{2}^{(i)}, \ldots\right)^{\top}$
\Rightarrow Observe that $\vec{z}^{(i)}=\left[W^{(i)}\right]^{\top} \vec{z}^{(i-1)}+\vec{b}^{(i)}$

Example

Each Layer is a Function

- We can think of each layer as a function mapping a vector to a vector.

$$
\begin{gathered}
\Rightarrow H^{(1)}(\vec{z})=\left[W^{(1)}\right]^{\top} \vec{z}+\vec{b}^{(1)} \\
>H^{(1)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
>H^{(2)}(\vec{z})=\left[W^{(2)}\right]^{T} \vec{z}+\vec{b}^{(2)} \\
>H^{(2)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}
\end{gathered}
$$

NNs as Function Composition

- The full NN is a composition of layer functions.

$$
H(\vec{x})=H^{(2)}\left(H^{(1)}(\vec{x})\right)=\left[W^{(2)}\right]^{\top} \underbrace{\left(\left[W^{(1)}\right]^{\top} \vec{x}+\vec{b}^{(1)}\right.}_{z^{(1)}})+\vec{b}^{(2)}
$$

NNs as Function Composition

- In general, if there k hidden layers:

$$
H(\vec{x})=H^{(k+1)}\left(\cdots H^{(3)}\left(H^{(2)}\left(H^{(1)}(\vec{x})\right)\right) \cdots\right)
$$

Exercise

Show that:

$$
H(\vec{x})=\left[W^{(2)}\right]^{\top}\left(\left[W^{(1)}\right]^{\top} \vec{x}+\vec{b}^{(1)}\right)+\vec{b}^{(2)}=\vec{w} \cdot \operatorname{Aug}(\vec{x})
$$

for some appropriately-defined vector \vec{w}.

Result

- The composition of linear functions is again a linear function.
- The NNs we have seen so far are all equivalent to linear models!
- For NNs to be more useful, we will need to add non-linearity.

Activations

- So far, the output of a neuron has been a linear function of its inputs:

$$
w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots
$$

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
- E.g., saturation.

Idea

- To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

Linear Activation

The linear activation is what we've been using.

$$
\sigma(z)=z
$$

Sigmoid Activation

- The sigmoid models saturation in many natural processes.

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

ReLU Activation

- The Rectified Linear Unit (ReLU) tends to work better in practice.

$$
g(z)=\max \{0, z\}
$$

Notation

$>z_{j}^{(i)}$ is the linear activation before g is applied.
$a_{j}^{(i)}=g\left(z^{(i)}\right)$ is the actual output of the neuron.

Example

$\Rightarrow g=$ ReLU

- Linear output
- $\vec{x}=(3,-1)^{\top}$
- $z_{1}^{(1)}=$
- $a_{1}^{(1)}=$
- $z_{2}^{(1)}=$
- $a_{2}^{(1)}=$
- $z_{3}^{(1)}=$
- $a_{3}^{(1)}=$
- $z_{1}^{(2)}=$

$$
W^{(1)}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
4 & 5 & 2
\end{array}\right) \quad W^{(2)}=\left(\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right) \quad \vec{b}^{(1)}=(3,-2,-2)^{T} \quad \vec{b}^{(2)}=(-4)^{T}
$$

Output Activations

- The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- In classification, sigmoid activation makes sense.
- In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

DEC $140 B$
Representation Learning Lecture $12 \mid$ Part 5
Demo

Feature Map

- We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$
H(\vec{x})=w_{0}+w_{1} \phi_{1}(\vec{x})+\ldots+w_{k} \phi_{k}(\vec{x})
$$

- These basis functions are fixed before learning.
- Downside: we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

- Interpretation: The hidden layers of a neural network learn a feature map.

Each Layer is a Function

- We can think of each layer as a function mapping a vector to a vector.

$$
\begin{aligned}
\Rightarrow H^{(1)}(\vec{z}) & =\left[W^{(1)}\right]^{\top} \vec{z}+\vec{b}^{(1)} \\
>H^{(1)} & : \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
\Rightarrow H^{(2)}(\vec{z})= & \left.=W^{(2)}\right]^{\top} \vec{z}+\vec{b}^{(2)} \\
& H^{(2)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}
\end{aligned}
$$

Each Layer is a Function

- The hidden layer performs a feature map from \mathbb{R}^{2} to \mathbb{R}^{3}.
- The output layer makes a prediction in \mathbb{R}^{3}.
- Intuition: The feature map is learned so as to make the output layer's job "easier".

Demo

- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

Demo

- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in \vec{x} and see
 activations of last hidden layer.

Learning a New Representation

Deep Learning

The NN has learned a new representation in which the data is easily classified.

