Representation Learning

Lecture 13 | Part 1

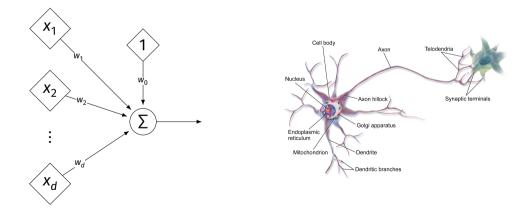
**Neural Networks** 

#### **Beyond RBFs**

- When training RBFs, we fixed the basis functions before training the weights.
- Representation learning was decoupled from learning the prediction function.
- Now: learn representation and prediction function together.

#### **Linear Models**

$$H(\vec{x}) = W_0 + W_1 X_1 + \dots + W_d X_d$$

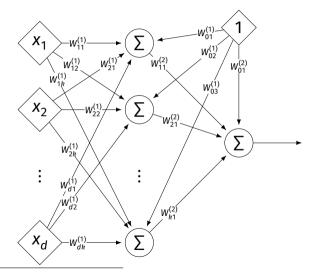


## **Generalizing Linear Models**

► The brain is a **network** of neurons.

- The output of a neuron is used as an input to another.
- Idea: chain together multiple "neurons" into a neural network.

# Neural Network<sup>1</sup> (One Hidden Layer)



<sup>1</sup>Specifically, a fully-connected, feed-forward neural network

#### Architecture

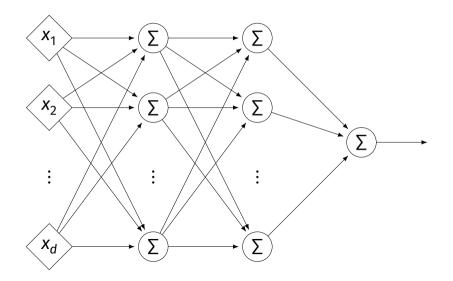
- Neurons are organized into layers.
   Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

#### Architecture

Can have more than one hidden layer.
 A network is "deep" if it has >1 hidden layer.

Hidden layers can have different number of neurons.

# Neural Network (Two Hidden Layers)

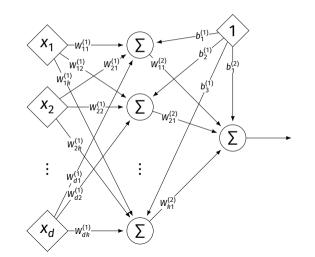


## **Network Weights**

- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

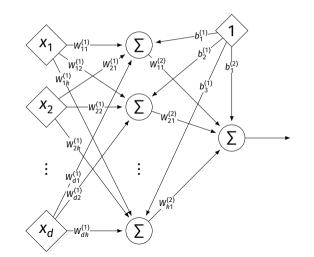
# Notation

- Input is layer #0.
- W<sup>(i)</sup><sub>jk</sub> denotes weight of connection between neuron j in layer (i – 1) and neuron k in layer i
- Layer weights are 2-d arrays.



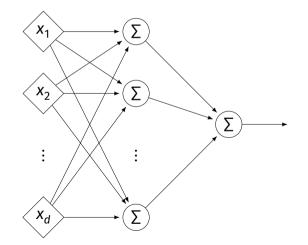
# Notation

- Each hidden/output neuron gets a "dummy" input of 1.
- *j*th node in *i*th layer assigned a bias weight of b<sup>(i)</sup><sub>j</sub>
- Biases for layer are a vector:  $\vec{b}^{(i)}$

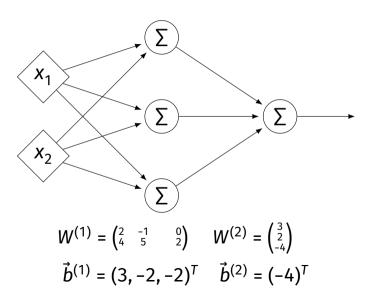


# Notation

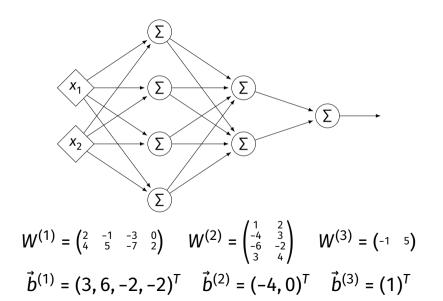
- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.



#### Example



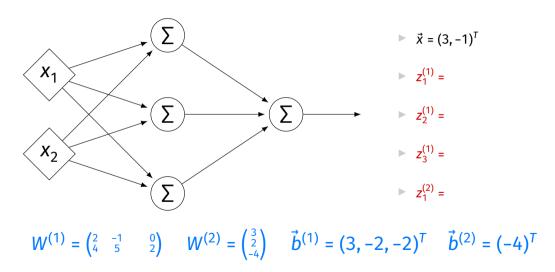
#### Example



#### Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- ▶ They are functions  $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate  $H(\vec{x})$ , compute result of layer *i*, use as inputs for layer *i* + 1.

#### Example

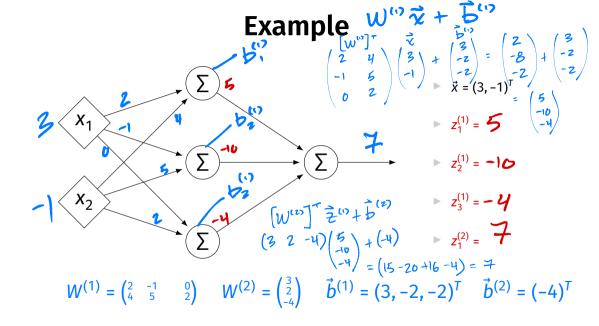


#### **Evaluation as Matrix Multiplication**

• Let  $z_j^{(i)}$  be the output of node *j* in layer *i*.

• Make a vector of these outputs:  $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$ 

• Observe that 
$$\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$$



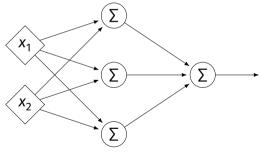
## Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{z} + \vec{b}^{(1)}$$

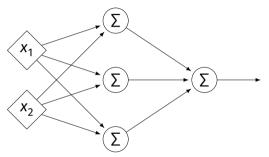
$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = \begin{bmatrix} W^{(2)} \end{bmatrix}^T \vec{z} + \vec{b}^{(2)}$$
$$H^{(2)} : \mathbb{R}^3 \to \mathbb{R}^1$$



## **NNs as Function Composition**

The full NN is a composition of layer functions.



$$H(\vec{x}) = H^{(2)}(H^{(1)}(\vec{x})) = \left[W^{(2)}\right]^T \underbrace{\left(\left[W^{(1)}\right]^T \vec{x} + \vec{b}^{(1)}\right)}_{\vec{z}^{(1)}} + \vec{b}^{(2)}$$

## **NNs as Function Composition**

▶ In general, if there *k* hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left( \cdots H^{(3)} \left( H^{(2)} \left( H^{(1)}(\vec{x}) \right) \right) \cdots \right)$$

#### Exercise

Show that:

$$H(\vec{x}) = \left[W^{(2)}\right]^{T} \left(\left[W^{(1)}\right]^{T} \vec{x} + \vec{b}^{(1)}\right) + \vec{b}^{(2)} = \vec{w} \cdot \operatorname{Aug}(\vec{x})$$

for some appropriately-defined vector  $\vec{w}$ .

## Result

- The composition of linear functions is again a linear function.
- The NNs we have seen so far are all equivalent to linear models!
- For NNs to be more useful, we will need to add non-linearity.

# Activations

So far, the output of a neuron has been a linear function of its inputs:

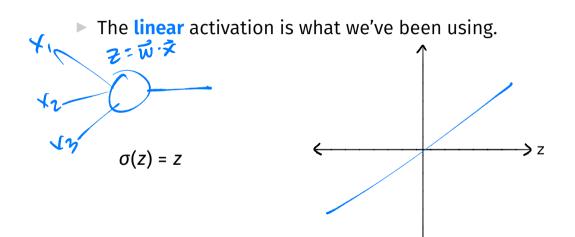
 $W_0 + W_1 X_1 + W_2 X_2 + \dots$ 

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
   E.g., saturation.

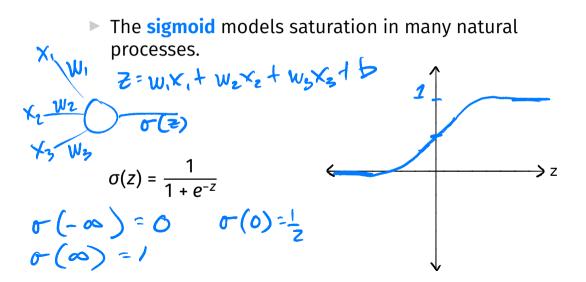
#### Idea

To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

#### **Linear Activation**

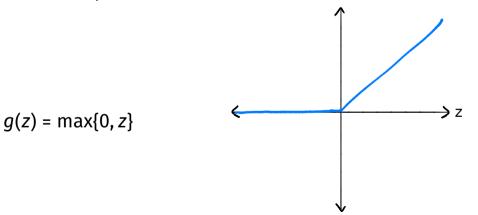


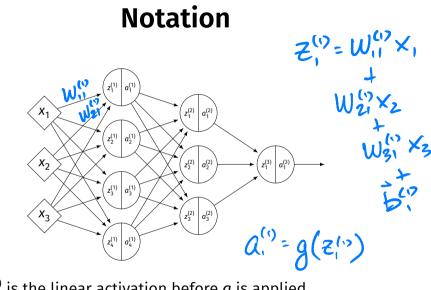
# **Sigmoid Activation**



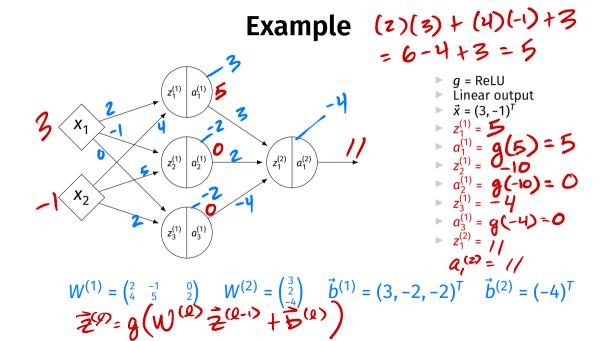
#### **ReLU Activation**

The Rectified Linear Unit (ReLU) tends to work better in practice.





z<sub>j</sub><sup>(i)</sup> is the linear activation before g is applied.
 a<sub>i</sub><sup>(i)</sup> = g(z<sup>(i)</sup>) is the actual output of the neuron.

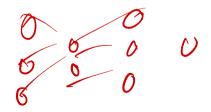


#### **Output Activations**

- The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- ► In classification, **sigmoid** activation makes sense.
- ► In regression, **linear** activation makes sense.

#### Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.



DSC 140B Representation Learning

Lecture 13 | Part 2

Demo

#### **Feature Map**

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + \dots + w_k \phi_k(\vec{x})$$

- These basis functions are fixed **before** learning.
- **Downside:** we have to choose  $\vec{\phi}$  somehow.

# Learning a Feature Map

Interpretation: The hidden layers of a neural network learn a feature map.

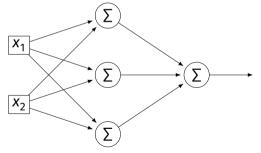
## Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{z} + \vec{b}^{(1)}$$

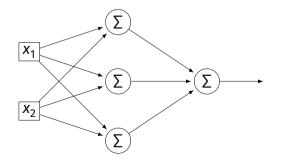
$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = \left[W^{(2)}\right]^T \vec{z} + \vec{b}^{(2)}$$
$$H^{(2)} : \mathbb{R}^3 \to \mathbb{R}^1$$



# Each Layer is a Function

- ▶ The hidden layer performs a feature map from  $\mathbb{R}^2$  to  $\mathbb{R}^3$ .
- The output layer makes a prediction in  $\mathbb{R}^3$ .
- Intuition: The feature map is learned so as to make the output layer's job "easier".



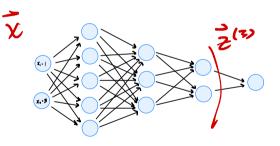
#### Demo

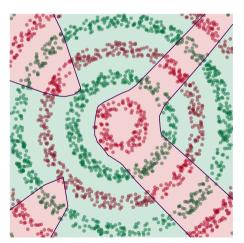
- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.



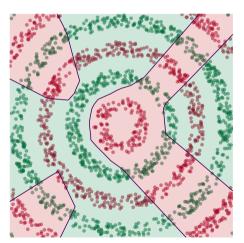
# Demo $\sqrt[7]{} \mapsto \frac{1}{2}$

- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in x and see activations of last hidden layer.

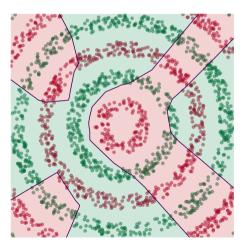




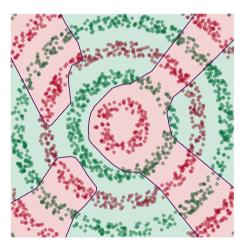




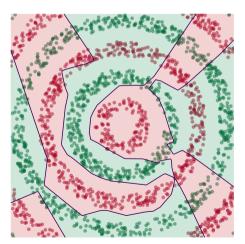






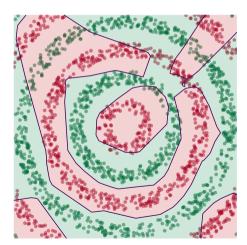




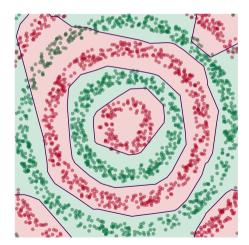










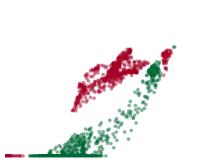
















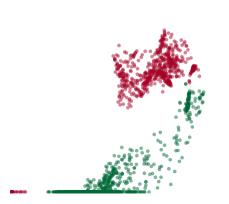












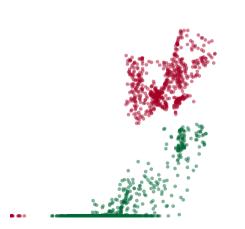




































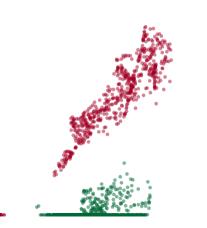
















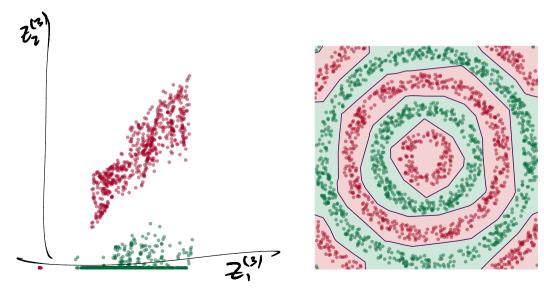












# **Deep Learning**

The NN has learned a new representation in which the data is easily classified.

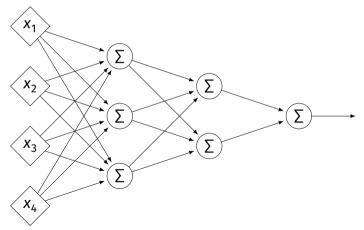
Representation Learning

Lecture 13 | Part 3

**Training Neural Networks** 

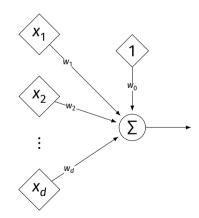
# Training

How do we learn the weights of a (deep) neural network?



#### Remember...

How did we learn the weights in linear least squares regression?



## **Empirical Risk Minimization**

- 0. Collect a training set,  $\{(\vec{x}^{(i)}, y_i)\}$
- 1. Pick the form of the prediction function, *H*.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

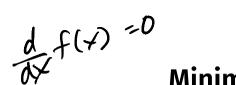
#### **Remember: Linear Least Squares**

0. Pick the form of the prediction function, *H*. • E.g., linear:  $H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + ... + w_d x_d = Aug(\vec{x}) \cdot \vec{w}$ 

1. Pick a loss function. E.g., the square loss.  $(H(\vec{r}) - \psi_i)^2$ 

2. Minimize the empirical risk w.r.t. that loss:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$



 $\vec{w} = (\mathbf{x}^{\mathsf{T}} \mathbf{x})^{-1} \mathbf{x}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}}$ 

# **Minimizing Risk**

► To minimize risk, we often use **vector calculus**.

- Either set  $\nabla_{\vec{w}} R(\vec{w}) = 0$  and solve...
- Or use gradient descent: walk in opposite direction of  $\nabla_{\vec{w}} R(\vec{w})$ .

► Recall,  $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$ 

$$\frac{d}{d\vec{w}}R(\vec{w})=\nabla_{\vec{w}}R(\vec{w})$$

#### In General

- Let  $\ell$  be the loss function, let  $H(\vec{x}; \vec{w})$  be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

#### **Gradient of** *H*

► To minimize risk, we want to compute  $\nabla_{\vec{w}} R$ .

- ► To compute  $\nabla_{\vec{w}} R$ , we want to compute  $\nabla_{\vec{w}} H$ .
- ▶ This will depend on the form of *H*.

## **Example: Linear Model**

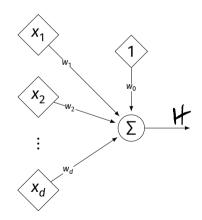
Suppose *H* is a linear prediction function:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

► What is 
$$\nabla_{\vec{w}} H$$
 with respect to  $\vec{w}$ ?  
 $\nabla_{\vec{w}} H = \left( \begin{array}{c} \partial H \\ \partial w_{o} \end{array}, \begin{array}{c} \partial H \\ \partial w_{o} \end{array} \right)^{T}$   
 $= \left( 1, \times 1, \times 2, \dots, \times d \right)^{T}$ 

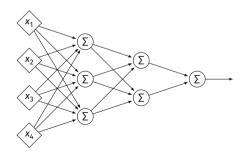
## **Example: Linear Model**

► Consider  $\partial H / \partial w_1$ : ?  $\checkmark$  1



- Suppose H is a neural network (with nonlinear activations).
- What is ∇H?

It's more complicated...



#### **Parameter Vectors**

It is often useful to pack all of the network's weights into a parameter vector, w.

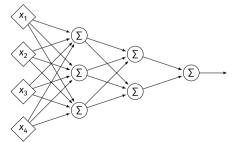
Order is arbitrary:

$$\vec{w} = (W_{11}^{(1)}, W_{12}^{(1)}, \dots, b_1^{(1)}, b_2^{(1)}, W_{11}^{(2)}, W_{12}^{(2)}, \dots, b_1^{(2)}, b_2^{(2)}, \dots)^T$$

The network is a function  $H(\vec{x}; \vec{w})$ .

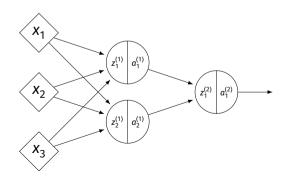
• Goal of learning: find the "best"  $\vec{w}$ .

- ►  $\nabla_{\vec{w}}H$  is a vector-valued function with one entry per parameter.
- Plugging a data point,  $\vec{x}$ , and a parameter vector,  $\vec{w}$ , into  $\nabla_{\vec{w}}H$  "evaluates the gradient", results in a vector.



#### **Exercise**

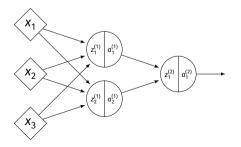
Suppose  $W_{11}^{(1)} = -2, W_{21}^{(1)} = -5, W_{31}^{(1)} = 2$  and  $\vec{x} = (3, 2, -2)^T$  and all biases are 0. ReLU activations are used. What is  $\partial H / \partial W_{11}^{(1)}(\vec{x}, \vec{w})$ ?



## **Recall: Chain Rule**

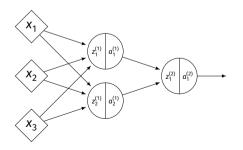
$$\frac{df}{dx}[f(g(x))] = \frac{df}{dg}(g(x))\frac{dg}{dx}$$
$$= f'(g(x))g'(x)$$

• Compute  $\partial H/\partial W_{11}^{(1)}$  for the network shown below. Assume the hidden layer activation function is  $\sigma$ .

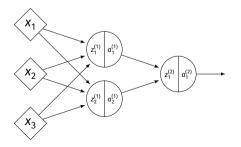


$$W^{(1)} = \begin{pmatrix} 3 & 2 \\ 4 & 1 \\ 1 & 3 \end{pmatrix} \quad W^{(2)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
$$\vec{x} = (3, 1, 2)^{T}$$

• Compute  $\partial H/\partial W_{11}^{(1)}$  for the network shown below. Assume the hidden layer activation function is  $\sigma$ .

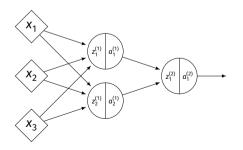


• Compute  $\partial H/\partial W_{21}^{(1)}$  for the network shown below. Assume the hidden layer activation function is  $\sigma$ .



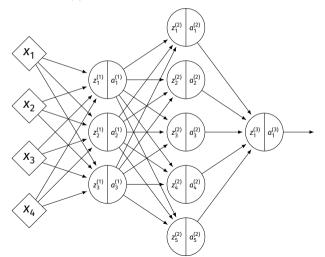
$$W^{(1)} = \begin{pmatrix} 3 & 2 \\ 4 & 1 \\ 1 & 3 \end{pmatrix} \quad W^{(2)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
$$\vec{x} = (3, 1, 2)^{T}$$

• Compute  $\partial H/\partial W_{21}^{(1)}$  for the network shown below. Assume the hidden layer activation function is  $\sigma$ .



## Imagine...

• Compute  $W_{11}^{(1)}$ :



#### **A Better Way**

- Computing the gradient is straightforward...
- But can involve a lot of redundant work.
- Backpropagation is a methodical approach to computing the gradient that is more efficient.