$$
\text { DEC } 140 B
$$

Representation Learning Lecture $13 \mid$ Part 1
Neural Networks

Beyond RBFs

- When training RBFs, we fixed the basis functions before training the weights.
- Representation learning was decoupled from learning the prediction function.
- Now: learn representation and prediction function together.

Linear Models

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

Generalizing Linear Models

- The brain is a network of neurons.
- The output of a neuron is used as an input to another.
- Idea: chain together multiple "neurons" into a neural network.

Neural Network ${ }^{1}$ (One Hidden Layer)

${ }^{1}$ Specifically, a fully-connected, feed-forward neural network

Architecture

- Neurons are organized into layers.
- Input layer, output layer, and hidden layers.
\Rightarrow Number of cells in input layer determined by dimensionality of input feature vectors.
> Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

- Can have more than one hidden layer.
- A network is "deep" if it has >1 hidden layer.
- Hidden layers can have different number of neurons.

Neural Network (Two Hidden Layers)

Network Weights

- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

Notation

- Input is layer \#0.
- $W_{j k}^{(i)}$ denotes weight of connection between neuron j in layer ($i-1$) and neuron k in layer i
- Layer weights are 2-d arrays.

Notation

- Each hidden/output neuron gets a "dummy" input of 1.
- j th node in ith layer assigned a bias weight of $b_{j}^{(i)}$
- Biases for layer are a vector: $\vec{b}^{(i)}$

Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.

Example

Example

Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- They are functions $H(\vec{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$
- To evaluate $H(\vec{x})$, compute result of layer i, use as inputs for layer $i+1$.

Example

Evaluation as Matrix Multiplication

Let $z_{j}^{(i)}$ be the output of node j in layer i.

- Make a vector of these outputs: $z^{(i)}=\left(z_{1}^{(i)}, z_{2}^{(i)}, \ldots\right)^{\top}$
\Rightarrow Observe that $\vec{z}^{(i)}=\left[W^{(i)}\right]^{\top} \vec{z}^{(i-1)}+\vec{b}^{(i)}$

Example

Each Layer is a Function

- We can think of each layer as a function mapping a vector to a vector.

$$
\begin{gathered}
\Rightarrow H^{(1)}(\vec{z})=\left[W^{(1)}\right]^{\top} \vec{z}+\vec{b}^{(1)} \\
>H^{(1)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
>H^{(2)}(\vec{z})=\left[W^{(2)}\right]^{T} \vec{z}+\vec{b}^{(2)} \\
>H^{(2)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}
\end{gathered}
$$

NNs as Function Composition

- The full NN is a composition of layer functions.

$$
H(\vec{x})=H^{(2)}\left(H^{(1)}(\vec{x})\right)=\left[W^{(2)}\right]^{\top} \underbrace{\left(\left[W^{(1)}\right]^{\top} \vec{x}+\vec{b}^{(1)}\right.}_{z^{(1)}})+\vec{b}^{(2)}
$$

NNs as Function Composition

- In general, if there k hidden layers:

$$
H(\vec{x})=H^{(k+1)}\left(\cdots H^{(3)}\left(H^{(2)}\left(H^{(1)}(\vec{x})\right)\right) \cdots\right)
$$

Exercise

Show that:

$$
H(\vec{x})=\left[W^{(2)}\right]^{\top}\left(\left[W^{(1)}\right]^{\top} \vec{x}+\vec{b}^{(1)}\right)+\vec{b}^{(2)}=\vec{w} \cdot \operatorname{Aug}(\vec{x})
$$

for some appropriately-defined vector \vec{w}.

Result

- The composition of linear functions is again a linear function.
- The NNs we have seen so far are all equivalent to linear models!
- For NNs to be more useful, we will need to add non-linearity.

Activations

- So far, the output of a neuron has been a linear function of its inputs:

$$
w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots
$$

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
- E.g., saturation.

Idea

- To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

Linear Activation

The linear activation is what we've been using.

$$
\sigma(z)=z
$$

Sigmoid Activation

- The sigmoid models saturation in many natural processes.

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

ReLU Activation

- The Rectified Linear Unit (ReLU) tends to work better in practice.

$$
g(z)=\max \{0, z\}
$$

Notation

$>z_{j}^{(i)}$ is the linear activation before g is applied.
$a_{j}^{(i)}=g\left(z^{(i)}\right)$ is the actual output of the neuron.

Example

$\Rightarrow g=$ ReLU

- Linear output
- $\vec{x}=(3,-1)^{\top}$
- $z_{1}^{(1)}=$
- $a_{1}^{(1)}=$
- $z_{2}^{(1)}=$
- $a_{2}^{(1)}=$
- $z_{3}^{(1)}=$
- $a_{3}^{(1)}=$
- $z_{1}^{(2)}=$

$$
W^{(1)}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
4 & 5 & 2
\end{array}\right) \quad W^{(2)}=\left(\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right) \quad \vec{b}^{(1)}=(3,-2,-2)^{T} \quad \vec{b}^{(2)}=(-4)^{T}
$$

Output Activations

- The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- In classification, sigmoid activation makes sense.
- In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

DEC $140 B$
Representation Learning Lecture $13 \mid$ Part 2
Demo

Feature Map

- We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$
H(\vec{x})=w_{0}+w_{1} \phi_{1}(\vec{x})+\ldots+w_{k} \phi_{k}(\vec{x})
$$

- These basis functions are fixed before learning.
- Downside: we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

- Interpretation: The hidden layers of a neural network learn a feature map.

Each Layer is a Function

- We can think of each layer as a function mapping a vector to a vector.

$$
\begin{aligned}
\Rightarrow H^{(1)}(\vec{z}) & =\left[W^{(1)}\right]^{\top} \vec{z}+\vec{b}^{(1)} \\
>H^{(1)} & : \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
\Rightarrow H^{(2)}(\vec{z})= & \left.=W^{(2)}\right]^{\top} \vec{z}+\vec{b}^{(2)} \\
& H^{(2)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}
\end{aligned}
$$

Each Layer is a Function

- The hidden layer performs a feature map from \mathbb{R}^{2} to \mathbb{R}^{3}.
- The output layer makes a prediction in \mathbb{R}^{3}.
- Intuition: The feature map is learned so as to make the output layer's job "easier".

Demo

- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

Demo

- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in \vec{x} and see
 activations of last hidden layer.

Learning a New Representation

Deep Learning

The NN has learned a new representation in which the data is easily classified.

DST $140 B$
Representation Learning Lecture 13 | Part 3

Training

- How do we learn the weights of a (deep) neural network?

Remember...

- How did we learn the weights in linear least squares regression?

Empirical Risk Minimization

0 . Collect a training set, $\left\{\left(\vec{x}^{(i)}, y_{i}\right)\right\}$

1. Pick the form of the prediction function, H.
2. Pick a loss function.
3. Minimize the empirical risk w.r.t. that loss.

Remember: Linear Least Squares

0 . Pick the form of the prediction function, H.
E.g., linear: $H(\vec{x} ; \vec{W})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}=\operatorname{Aug}(\vec{x}) \cdot \vec{W}$

1. Pick a loss function.

- E.g., the square loss.

2. Minimize the empirical risk w.r.t. that loss:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

Minimizing Risk

- To minimize risk, we often use vector calculus.

E Either set $\nabla_{\vec{w}} R(\vec{w})=0$ and solve...

- Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
\Rightarrow Recall, $\nabla_{\vec{w}} R(\vec{w})=\left(\partial R / \partial w_{0}, \partial R / \partial w_{1}, \ldots, \partial R / \partial w_{d}\right)^{T}$

In General

- Let ℓ be the loss function, let $H(\vec{x} ; \vec{w})$ be the prediction function.
- The empirical risk:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- Using the chain rule:

$$
\nabla_{\vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial l}{\partial H} \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)
$$

Gradient of H

- To minimize risk, we want to compute $\nabla_{\vec{w}} R$.
- To compute $\nabla_{\vec{w}} R$, we want to compute $\nabla_{\vec{w}} H$.
- This will depend on the form of H.

Example: Linear Model

- Suppose H is a linear prediction function:

$$
H(\vec{x} ; \vec{w})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

- What is $\nabla_{\vec{w}} H$ with respect to \vec{w} ?

Example: Linear Model

Consider $\partial H / \partial w_{1}$:

Example: Neural Networks

- Suppose H is a neural network (with nonlinear activations).
- What is ∇H ?
- It's more complicated...

Parameter Vectors

- It is often useful to pack all of the network's weights into a parameter vector, \vec{w}.
- Order is arbitrary:

$$
\vec{w}=\left(W_{11}^{(1)}, W_{12}^{(1)}, \ldots, b_{1}^{(1)}, b_{2}^{(1)}, W_{11}^{(2)}, W_{12}^{(2)}, \ldots, b_{1}^{(2)}, b_{2}^{(2)}, \ldots\right)^{\top}
$$

- The network is a function $H(\vec{x} ; \vec{w})$.
- Goal of learning: find the "best" \vec{w}.

Gradient of Neural Network

> $\nabla_{\vec{w}} H$ is a vector-valued function.

- Plugging a data point, \vec{x}, and a parameter vector, \vec{w}, into $\nabla_{\vec{w}} H$ "evaluates the gradient", results in a vector, same size as \vec{w}.

Exercise

Suppose $W_{11}^{(1)}=-2, W_{21}^{(1)}=-5, W_{31}^{(1)}=2$ and $\vec{x}=$ $(3,2,-2)^{T}$ and all biases are 0 . ReLU activations are used. What is $\partial H / \partial W_{11}^{(1)}(\vec{x}, \vec{w})$?

Example

Consider $\partial H / \partial W_{11}^{(3)}$:

Example

Consider $\partial H / \partial W_{11}^{(2)}$:

Example

Consider $\partial H / \partial W_{11}^{(1)}$:

A Better Way

- Computing the gradient is straightforward...
- But can involve a lot of repeated work.
- Backpropagation is an algorithm for efficiently computing the gradient of a neural network.

