dsc-capstone.org/enrollment

dsc-capstone.org/enrollment

DsC /1408

Represaitaton [earmg

Lecture 14 Part1

Training Neural Networks

Training

How do we learn the weights of a (deep) neural
network?

Remember...

How did we learn the weights in linear least
squares regression?

5\
(S
el

Empirical Risk Minimization
Collect a training set, {(X,)}
Pick the form of the prediction function, H.
Pick a loss function.

Minimize the empirical risk w.rt. that loss.

Remember: Linear Least Squares

Pick the form of the prediction function, H.
E.g., linear: H(X; W) = wy + W, X, + ... + WyX, = Aug(X) - w

Pick a loss function.
E.g., the square loss.

Minimize the empirical risk w.rt. that loss:

n

Req(W) = zm)-yi)? = Z(Aug(x“'))-v*v—y,-)z

i=1

Minimizing Risk

To minimize risk, we often use vector calculus.
Either set V;,R(W) = 0 and solve...
Or use gradient descent: walk in opposite direction of
vV, R(W).

Recall, V;R(W) = (OR/ow,, OR/dwy, ..., 0R [ow,)"

In General

Let £ be the loss function, let H(X; W) be the
prediction function.

The empirical risk:

Gradient of H

To minimize risk, we want to compute V;R.
To compute V;R, we want to compute V;H.

This will depend on the form of H.

Example: Linear Model

Suppose H is a linear prediction function:

H(X; W) = Wy + WXy + ... + WyX

What is V;H with respect to W?

Example: Linear Model

Consider oH [ow,:

§ |
-

Example: Neural Networks

Suppose H is a neural network (with nonlinear
activations).

What is VH?
It's more complicated...

Parameter Vectors

It is often useful to pack all of the network’s
weights into a parameter vector, W.

Order is arbitrary:

N 1) 11,01 1) (1) @) (2 2) (2

= (WO, WD, b0 b0 W@ W@, e p@
The network is a function H(x; w).

Goal of learning: find the “best” w.

Gradient of Neural Network

V;H is a vector-valued function.

Plugging a data point, X, and a parameter vector,
W, into V;H “evaluates the gradient”, results in a
vector, same size as w.

Suppose WY = -2,w{) = -5,W) = 2 and X =
(3,2,-2)" and all biases are 0. ReLU activations are
used. What is oH /oW{)(X,)?

Example

Consider aH/awﬁ):

m
&/

Example

Consider aH/awﬁ):

m
&/

Example

Consider aH/awﬂ):

m
&/

A Better Way

Computing the gradient is straightforward...
But can involve a lot of repeated work.

Backpropagation is an algorithm for efficiently
computing the gradient of a neural network.

pDsC /14o0&

Represaitaton [earm@

Lecture 14 Part 2

Backpropagation

Gradient of a Network

We want to compute the gradient V;H.
That is, aH/aW,.(f) and aH/ab,@) for all valid i,J, .

A network is a composition of functions.

We'll make good use of the chain rule.

Recall: The Chain Rule

d _dfdg
af(g(x» " dg dx

= f'(g(x)) g'(x)

Some Notation

We'll consider an arbitrary node in layer £ of a
neural network.

Let g be the activation function.

n, denotes the number of nodes in layer ¢.

Arbitrary Node

Claim #1

oH _ oH (e-1)
aW,.(;’) az}*’)

i

Claim #2

Claim #3

oH

(b+1)

aa? & azf”)

What is 0H/ob{"?

General Formulas

For any node in any neural network?, we have the
following recursive formulas:
Zn(’+1 aH ({,"'1)

oH OH (0

—_ = = Z:

oD 5al® g'(/)
Ji J

OH _ (l’ 1)

ow) - az() i

OH _ OH
ab® 50
J Ji

"Fully-connected, feedforward network

Main Idea

The derivatives in layer £ depend on derivatives in
layer £ + 1.

Backpropagation
Idea: compute the derivatives in last layers, first.

That is:
Compute derivatives in last layer, #; store them.
Use to compute derivatives in layer £ - 1.
Use to compute derivatives in layer £ - 2.

Backpropagation

Given an input X and a current parameter vector w:

Evaluate the network to compute 2" and a!” for all nodes.
For each layer ¢ from last to first:

n _OH (P+1)
Compute Zk’{ 20 Wi,

l
Compute 2 m = (*’) g (j)
l

Compute -2 = 2q()
U c)z}.
Compute 2 = 2of
P ab az}”)

i

Example

Compute the entries of the gradient given:

1

0 1

W‘”=(§ -3) W<z>=(2 1) W<3>=(_32) %=(2,1) g(2) = RelU

an’1 BH W(P”) dH oH
k=1 a az}") aa,(’)

aa“

Aside: Derivative of RelLU

N

g(z) = max{0, z}

0, z<0 <

g'(2) = 1 250

Summary: Backprop

Backprop is an algorithm for efficiently
computing the gradient of a neural network

It is not an algorithm you need to carry out by
hand: your NN library can do it for you.

