
Lecture 15 | Part 1

Backpropagation

Gradient of a Network▶ We want to compute the gradient ∇𝑤⃗𝐻.▶ That is, 𝜕𝐻/𝜕𝑊 (ℓ)𝑖𝑗 and 𝜕𝐻/𝜕𝑏(ℓ)𝑖 for all valid 𝑖, 𝑗, ℓ.▶ A network is a composition of functions.▶ We’ll make good use of the chain rule.

Recall: The Chain Rule

𝑑𝑑𝑥𝑓(𝑔(𝑥)) = 𝑑𝑓𝑑𝑔𝑑𝑔𝑑𝑥= 𝑓′(𝑔(𝑥)) 𝑔′(𝑥)

Some Notation▶ We’ll consider an arbitrary node in layer ℓ of a
neural network.▶ Let 𝑔 be the activation function.▶ 𝑛ℓ denotes the number of nodes in layer ℓ.

Arbitrary Node

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗
𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1
⋮

𝑊 (ℓ+1)𝑗1
𝑊 (ℓ+1)𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖 𝑊 (ℓ)𝑖𝑗

1𝑏(ℓ)𝑗

▶ 𝜕𝐻𝜕𝑊 (ℓ)𝑖𝑗 ?▶ 𝜕𝐻𝜕𝑏(ℓ)𝑗 ?

Claim #1𝜕𝐻𝜕𝑊 (ℓ)𝑖𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗 𝑎(ℓ−1)𝑖

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗
𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1
⋮

𝑊 (ℓ+1)𝑗1
𝑊 (ℓ+1)𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖 𝑊 (ℓ)𝑖𝑗

1𝑏(ℓ)𝑗

Claim #2𝜕𝐻𝜕𝑧(ℓ)𝑗 = 𝜕𝐻𝜕𝑎(ℓ)𝑗 𝑔′(𝑧ℓ𝑗)
𝑧(ℓ)𝑗 𝑎(ℓ)𝑗

𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1
⋮

𝑊 (ℓ+1)𝑗1
𝑊 (ℓ+1)𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖 𝑊 (ℓ)𝑖𝑗

1𝑏(ℓ)𝑗

Claim #3𝜕𝐻𝜕𝑎(ℓ)𝑗 = 𝑛ℓ+1∑𝑘=1 𝜕𝐻𝜕𝑧(ℓ+1)𝑘 𝑊 (ℓ+1)𝑗𝑘

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗
𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1
⋮

𝑊 (ℓ+1)𝑗1
𝑊 (ℓ+1)𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖 𝑊 (ℓ)𝑖𝑗

1𝑏(ℓ)𝑗

Exercise

What is 𝜕𝐻/𝜕𝑏(ℓ)𝑗 ?

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗
𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1
⋮

𝑊 (ℓ+1)𝑗1
𝑊 (ℓ+1)𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖 𝑊 (ℓ)𝑖𝑗

1𝑏(ℓ)𝑗

General Formulas▶ For any node in any neural network1, we have the
following recursive formulas:▶ 𝜕𝐻𝜕𝑎(ℓ)𝑗 = ∑𝑛ℓ+1𝑘=1 𝜕𝐻𝜕𝑧(ℓ+1)𝑘 𝑊 (ℓ+1)𝑗𝑘▶ 𝜕𝐻𝜕𝑧(ℓ)𝑗 = 𝜕𝐻𝜕𝑎(ℓ)𝑗 𝑔′(𝑧ℓ𝑗)▶ 𝜕𝐻𝜕𝑊 (ℓ)𝑖𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗 𝑎(ℓ−1)𝑖▶ 𝜕𝐻𝜕𝑏(ℓ)𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗

1Fully-connected, feedforward network

Main Idea
The derivatives in layer ℓ depend on derivatives in
layer ℓ + 1.

Backpropagation▶ Idea: compute the derivatives in last layers, first.▶ That is:▶ Compute derivatives in last layer, ℓ; store them.▶ Use to compute derivatives in layer ℓ − 1.▶ Use to compute derivatives in layer ℓ − 2.▶ …

Backpropagation
Given an input ⃗𝑥 and a current parameter vector 𝑤⃗:
1. Evaluate the network to compute 𝑧(ℓ)𝑖 and 𝑎(ℓ)𝑖 for all nodes.
2. For each layer ℓ from last to first:▶ Compute 𝜕𝐻𝜕𝑎(ℓ)𝑗 = ∑𝑛ℓ+1𝑘=1 𝜕𝐻𝜕𝑧(ℓ+1)𝑘 𝑊 (ℓ+1)𝑗𝑘▶ Compute 𝜕𝐻𝜕𝑧(ℓ)𝑗 = 𝜕𝐻𝜕𝑎(ℓ)𝑗 𝑔′(𝑧ℓ𝑗)▶ Compute 𝜕𝐻𝜕𝑊(ℓ)𝑖𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗 𝑎(ℓ−1)𝑖▶ Compute 𝜕𝐻𝜕𝑏(ℓ)𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗

!

s

Example
Compute the entries of the gradient given:𝑊 (1) = (2 −32 1) 𝑊 (2) = (2 10 1) 𝑊 (3) = (3−2) ⃗𝑥 = (2, 1)𝑇 𝑔(𝑧) = ReLU

𝑥1
𝑥2

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2

𝑧(3)1 𝑎(3)1
𝜕𝐻𝜕𝑎(ℓ)𝑗 = ∑𝑛ℓ+1𝑘=1 𝜕𝐻𝜕𝑧(ℓ+1)𝑘 𝑊 (ℓ+1)𝑗𝑘 𝜕𝐻𝜕𝑧(ℓ)𝑗 = 𝜕𝐻𝜕𝑎(ℓ)𝑗 𝑔′(𝑧ℓ𝑗) 𝜕𝐻𝜕𝑊(ℓ)𝑖𝑗 = 𝜕𝐻𝜕𝑧(ℓ)𝑗 𝑎(ℓ−1)𝑖

H=a,)

g(z)=linear

for hidden

2 2 ⑧
60

2 18
12 12

-3 4 44,0 33312 2424
20

-500 1 114 64-76
-2 -2Dixin? (8,4,0,0,18,0,-12, ...)

Aside: Derivative of ReLU

𝑔(𝑧) = max{0, 𝑧}𝑔′(𝑧) = {0, 𝑧 < 01, 𝑧 > 0 z

I

-
-

-

Summary: Backprop▶ Backprop is an algorithm for efficiently
computing the gradient of a neural network▶ It is not an algorithm you need to carry out by
hand: your NN library can do it for you.

Lecture 15 | Part 2

Gradient Descent for NN Training

Empirical Risk Minimization

0. Collect a training set, {(⃗𝑥(𝑖), 𝑦𝑖)}
1. Pick the form of the prediction function, 𝐻.▶ E.g., a neural network, 𝐻.
2. Pick a loss function.

3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk▶ To minimize risk, we often use vector calculus.▶ Either set ∇𝑤⃗𝑅(𝑤⃗) = 0 and solve...▶ Or use gradient descent: walk in opposite direction of∇𝑤⃗𝑅(𝑤⃗).▶ Recall, ∇𝑤⃗𝑅(𝑤⃗) = (𝜕𝑅/𝜕𝑤0, 𝜕𝑅/𝜕𝑤1, … , 𝜕𝑅/𝜕𝑤𝑑)𝑇

In General▶ Let ℓ be the loss function, let 𝐻(⃗𝑥; 𝑤⃗) be the
prediction function.▶ The empirical risk:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Using the chain rule:∇𝑤⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)

Training Neural Networks▶ For neural networks with nonlinear activations,
the risk 𝑅(𝑤⃗) is typically complicated.▶ The mininimizer cannot be found directly.▶ Instead, we use iterative methods, such as
gradient descent.

w =(X
+x)-xty

Iterative Optimization▶ To minimize a function 𝑓(⃗𝑥), we may try to
compute ∇⃗𝑓(⃗𝑥); set to 0; solve.▶ Often, there is no closed-form solution.▶ How do we minimize 𝑓?

Example▶ Consider 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2.x =(x,y)
+

Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system?2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Example▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.▶ The gradient is:∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2)2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3))▶ Can we solve the system? Not in closed form.2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 02𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Idea

▶ Apply an iterative approach.▶ Start at an arbitrary location.▶ “Walk downhill”, towards
minimum.

Which way is down?▶ Consider a differentiable
function 𝑓(𝑥, 𝑦).▶ We are standing at 𝑃 = (𝑥0, 𝑦0).▶ In a small region around 𝑃, 𝑓
looks like a plane.▶ Slope of plane in 𝑥, 𝑦
directions:𝜕𝑓𝜕𝑥(𝑥0, 𝑦0) 𝜕𝑓𝜕𝑦(𝑥0, 𝑦0)

The Gradient▶ Let 𝑓 ∶ ℝ𝑑 → ℝ be differentiable. The gradient of𝑓 at ⃗𝑥 is defined:∇⃗𝑓(⃗𝑥) = (𝜕𝑓𝜕𝑥1 (⃗𝑥), 𝜕𝑓𝜕𝑥2 (⃗𝑥), … , 𝜕𝑓𝜕𝑥𝑑 (⃗𝑥))𝑇▶ Note: ∇⃗𝑓(⃗𝑥) is a function mapping ℝ𝑑 → ℝ𝑑.

Which way is down?

▶ ∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest ascent at (𝑥0, 𝑦0).▶ −∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest descent at (𝑥0, 𝑦0).

Gradient Properties▶ The gradient is used in the linear approximation
of 𝑓:𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + 𝛿⃗ ⋅ ∇⃗𝑓(𝑥0, 𝑦0)▶ Important properties:▶ ∇⃗𝑓(⃗𝑥) points in direction of steepest ascent at ⃗𝑥.▶ −∇⃗𝑓(⃗𝑥) points in direction of steepest descent at ⃗𝑥.▶ In directions orthogonal to ∇⃗𝑓(⃗𝑥), 𝑓 does not change!▶ ‖∇⃗𝑓(⃗𝑥)‖ measures steepness of ascent

Gradient Descent▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.▶ Until convergence, repeat:▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓(⃗𝑥(𝑖)).▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).▶ When do we stop?▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x

Backprop Revisited▶ The weights of a neural network can be trained
using gradient descent.▶ This requires the gradient to be calculated
repeatedly; this is where backprop enters.▶ Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.

Backprop Revisited▶ Consider training a NN using the square loss:∇𝑤⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝜕ℓ𝜕𝐻∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)= 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖) ∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)

l =(H - y)z

Backprop Revisited▶ Interpretation:∇𝑤⃗𝑅(𝑤⃗) = 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)⏟
Error

∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)⏟
Blame▶ When used in SGD, backprop “propagates error

backward” in order to update weights.

Difficulty of Training NNs▶ Gradient descent is guaranteed to find optimum
when objective function is convex.2

2Assuming it is properly initialized

Difficulty of Training NNs▶ When activations are non-linear, neural network
risk is highly non-convex:

R(w)

Non-Convexity▶ When 𝑅 is non-convex, GD can get “stuck” in local
minima.▶ Solution depends on initialization.▶ More sophisticated optimizers, using
momentum, adaptation, better initialization, etc.▶ Adagrad, RMSprop, Adam, etc.

3548

Difficulty of Training (Deep) NNs▶ Deep networks can suffer from the problem of
vanishing gradients: if 𝑤 is a weight at the
“front” of the network, 𝜕𝐻/𝜕𝑤 can be very small

𝑥1
𝑥2
𝑥3

∑
∑
∑
∑

∑
∑
∑

∑

Vanishing Gradients▶ If 𝜕𝐻/𝜕𝑤 is always close to zero, 𝑤 is updated
very slowly by gradient descent.▶ In short: early layers are slower to train.▶ One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients

z

Sigmoid

z

ReLU

gic

gi

Lecture 15 | Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk▶ In ML, we often want to minimize a risk function:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

Observation▶ The gradient of the risk function is a sum of
gradients: ∇⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ One term for each point in training data.

Problem▶ In machine learning, the number of training
points 𝑛 can be very large.▶ Computing the gradient can be expensive when𝑛 is large.▶ Therefore, each step of gradient descent can be
expensive.

Idea▶ The (full) gradient of the risk uses all of the
training data:∇𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ∇ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ It is an average of 𝑛 gradients.▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.

Stochastic Gradient▶ Choose a random subset (mini-batch) 𝐵 of the
training data.▶ Compute a stochastic gradient:∇𝑅(𝑤⃗) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

Stochastic Gradient

∇𝑅(𝑤⃗) ≈ ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.▶ Bad: it is a (random) approximation of the full
gradient, noisy.

Stochastic Gradient Descent (SGD)
for ERM▶ Pick arbitrary starting point ⃗𝑥(0), learning rate

parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.▶ Until convergence, repeat:▶ Randomly sample a batch 𝐵 of 𝑚 training data points
(on each iteration).▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):𝑔⃗ = ∑𝑖∈𝐵 ∇⃗ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂𝑔⃗

Idea▶ In practice, a stochastic gradient often works
well enough.▶ It is better to take many noisy steps quickly than
few exact steps slowly.

Batch Size▶ Batch size 𝑚 is a parameter of the algorithm.▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.▶ Extreme case when 𝑚 = 1 will still work.

&
v

V
L

L

2 &
↓

2

2 C L

v L

v<-L

Usefulness of SGD▶ SGD allows learning on massive data sets.▶ Useful even when exact solutions available.▶ E.g., least squares regression / classification.

Training NNs in Practice▶ There are several Python packages for training
NNs:▶ PyTorch▶ Tensorflow / Keras▶ This week’s discussion was a Tensorflow tutorial.

