
Lecture 15 | Part 1

Backpropagation

Gradient of a Network

▶ We want to compute the gradient ∇�⃗�𝐻.
▶ That is, 𝜕𝐻/𝜕𝑊 (ℓ)

𝑖𝑗 and 𝜕𝐻/𝜕𝑏(ℓ)𝑖 for all valid 𝑖, 𝑗, ℓ.

▶ A network is a composition of functions.

▶ We’ll make good use of the chain rule.

Recall: The Chain Rule

𝑑
𝑑𝑥𝑓(𝑔(𝑥)) =

𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

= 𝑓′(𝑔(𝑥)) 𝑔′(𝑥)

Some Notation

▶ We’ll consider an arbitrary node in layer ℓ of a
neural network.

▶ Let 𝑔 be the activation function.

▶ 𝑛ℓ denotes the number of nodes in layer ℓ.

Arbitrary Node

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗

𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1

⋮

𝑊 (ℓ+1)
𝑗1

𝑊 (ℓ+1)
𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖
𝑊 (ℓ)

𝑖𝑗

1
𝑏(ℓ)𝑗

▶ 𝜕𝐻
𝜕𝑊 (ℓ)

𝑖𝑗
?

▶ 𝜕𝐻
𝜕𝑏(ℓ)𝑗

?

Claim #1
𝜕𝐻
𝜕𝑊 (ℓ)

𝑖𝑗

= 𝜕𝐻
𝜕𝑧(ℓ)𝑗

𝑎(ℓ−1)𝑖

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗

𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1

⋮

𝑊 (ℓ+1)
𝑗1

𝑊 (ℓ+1)
𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖

𝑊 (ℓ)
𝑖𝑗

1
𝑏(ℓ)𝑗

Claim #2
𝜕𝐻
𝜕𝑧(ℓ)𝑗

= 𝜕𝐻
𝜕𝑎(ℓ)𝑗

𝑔′(𝑧ℓ𝑗)

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗

𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1

⋮

𝑊 (ℓ+1)
𝑗1

𝑊 (ℓ+1)
𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖

𝑊 (ℓ)
𝑖𝑗

1
𝑏(ℓ)𝑗

Claim #3

𝜕𝐻
𝜕𝑎(ℓ)𝑗

=
𝑛ℓ+1

∑
𝑘=1

𝜕𝐻
𝜕𝑧(ℓ+1)𝑘

𝑊 (ℓ+1)
𝑗𝑘

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗

𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1

⋮

𝑊 (ℓ+1)
𝑗1

𝑊 (ℓ+1)
𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖

𝑊 (ℓ)
𝑖𝑗

1
𝑏(ℓ)𝑗

Exercise

What is 𝜕𝐻/𝜕𝑏(ℓ)𝑗 ?

𝑧(ℓ)𝑗 𝑎(ℓ)𝑗

𝑧(ℓ+1)1 𝑎(ℓ+1)1

𝑧(ℓ+1)𝑛ℓ+1 𝑎(ℓ+1)𝑛ℓ+1

⋮

𝑊 (ℓ+1)
𝑗1

𝑊 (ℓ+1)
𝑗𝑛ℓ+1

𝑧(ℓ−1)𝑖 𝑎(ℓ−1)𝑖
𝑊 (ℓ)

𝑖𝑗

1
𝑏(ℓ)𝑗

General Formulas
▶ For any node in any neural network1, we have the
following recursive formulas:
▶ 𝜕𝐻

𝜕𝑎(ℓ)𝑗
= ∑𝑛ℓ+1

𝑘=1
𝜕𝐻

𝜕𝑧(ℓ+1)𝑘
𝑊 (ℓ+1)

𝑗𝑘

▶ 𝜕𝐻
𝜕𝑧(ℓ)𝑗

= 𝜕𝐻
𝜕𝑎(ℓ)𝑗

𝑔′(𝑧ℓ𝑗)

▶ 𝜕𝐻
𝜕𝑊 (ℓ)

𝑖𝑗
= 𝜕𝐻

𝜕𝑧(ℓ)𝑗
𝑎(ℓ−1)𝑖

▶ 𝜕𝐻
𝜕𝑏(ℓ)𝑗

= 𝜕𝐻
𝜕𝑧(ℓ)𝑗

1Fully-connected, feedforward network

Main Idea

The derivatives in layer ℓ depend on derivatives in
layer ℓ + 1.

Backpropagation

▶ Idea: compute the derivatives in last layers, first.

▶ That is:
▶ Compute derivatives in last layer, ℓ; store them.
▶ Use to compute derivatives in layer ℓ − 1.
▶ Use to compute derivatives in layer ℓ − 2.
▶ …

Backpropagation

Given an input ⃗𝑥 and a current parameter vector �⃗�:
1. Evaluate the network to compute 𝑧(ℓ)𝑖 and 𝑎(ℓ)𝑖 for all nodes.
2. For each layer ℓ from last to first:

▶ Compute 𝜕𝐻
𝜕𝑎(ℓ)𝑗

= ∑𝑛ℓ+1
𝑘=1

𝜕𝐻
𝜕𝑧(ℓ+1)𝑘

𝑊 (ℓ+1)
𝑗𝑘

▶ Compute 𝜕𝐻
𝜕𝑧(ℓ)𝑗

= 𝜕𝐻
𝜕𝑎(ℓ)𝑗

𝑔′(𝑧ℓ𝑗)

▶ Compute 𝜕𝐻
𝜕𝑊 (ℓ)

𝑖𝑗
= 𝜕𝐻
𝜕𝑧(ℓ)𝑗

𝑎(ℓ−1)𝑖

▶ Compute 𝜕𝐻
𝜕𝑏(ℓ)𝑗

= 𝜕𝐻
𝜕𝑧(ℓ)𝑗

Example
Compute the entries of the gradient given:

𝑊 (1) = (2 −3
2 1) 𝑊 (2) = (2 1

0 1) 𝑊 (3) = (3−2) ⃗𝑥 = (2, 1)𝑇 𝑔(𝑧) = ReLU

𝑥1

𝑥2

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(3)1 𝑎(3)1

𝜕𝐻
𝜕𝑎(ℓ)𝑗

= ∑𝑛ℓ+1𝑘=1
𝜕𝐻

𝜕𝑧(ℓ+1)𝑘
𝑊 (ℓ+1)
𝑗𝑘

𝜕𝐻
𝜕𝑧(ℓ)𝑗

= 𝜕𝐻
𝜕𝑎(ℓ)𝑗

𝑔′(𝑧ℓ𝑗)
𝜕𝐻
𝜕𝑊 (ℓ)

𝑖𝑗
= 𝜕𝐻
𝜕𝑧(ℓ)𝑗

𝑎(ℓ−1)𝑖

Aside: Derivative of ReLU

𝑔(𝑧) = max{0, 𝑧}

𝑔′(𝑧) = {
0, 𝑧 < 0
1, 𝑧 > 0

z

Summary: Backprop

▶ Backprop is an algorithm for efficiently
computing the gradient of a neural network

▶ It is not an algorithm you need to carry out by
hand: your NN library can do it for you.

Lecture 15 | Part 2

Gradient Descent for NN Training

Empirical Risk Minimization

0. Collect a training set, {(⃗𝑥(𝑖), 𝑦𝑖)}

1. Pick the form of the prediction function, 𝐻.
▶ E.g., a neural network, 𝐻.

2. Pick a loss function.

3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk

▶ To minimize risk, we often use vector calculus.
▶ Either set ∇�⃗�𝑅(�⃗�) = 0 and solve...
▶ Or use gradient descent: walk in opposite direction of

∇�⃗�𝑅(�⃗�).

▶ Recall, ∇�⃗�𝑅(�⃗�) = (𝜕𝑅/𝜕𝑤0, 𝜕𝑅/𝜕𝑤1, … , 𝜕𝑅/𝜕𝑤𝑑)𝑇

In General
▶ Let ℓ be the loss function, let 𝐻(⃗𝑥; �⃗�) be the
prediction function.

▶ The empirical risk:

𝑅(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

▶ Using the chain rule:

∇�⃗�𝑅(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1

𝜕ℓ
𝜕𝐻∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)

Training Neural Networks

▶ For neural networks with nonlinear activations,
the risk 𝑅(�⃗�) is typically complicated.

▶ The mininimizer cannot be found directly.

▶ Instead, we use iterative methods, such as
gradient descent.

Iterative Optimization

▶ To minimize a function 𝑓(⃗𝑥), we may try to
compute ∇⃗𝑓(⃗𝑥); set to 0; solve.

▶ Often, there is no closed-form solution.

▶ How do we minimize 𝑓?

Example
▶ Consider 𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 + (𝑥 − 2)2 + (𝑦 − 3)2.

x

0.20.0 0.2 0.4 0.6 0.8 1.0

y

0.25
0.00

0.25
0.50

0.75
1.00

1.25

10
11
12
13
14
15
16
17

Example
▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.

▶ The gradient is:

∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒
𝑥2+𝑦2 + 2(𝑥 − 2)

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3)
)

▶ Can we solve the system?

2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 0
2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Example
▶ Try solving ∇⃗𝑓(𝑥, 𝑦) = 0.

▶ The gradient is:

∇⃗𝑓(𝑥, 𝑦) = (2𝑥𝑒
𝑥2+𝑦2 + 2(𝑥 − 2)

2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3)
)

▶ Can we solve the system? Not in closed form.

2𝑥𝑒𝑥2+𝑦2 + 2(𝑥 − 2) = 0
2𝑦𝑒𝑥2+𝑦2 + 2(𝑦 − 3) = 0

Idea

▶ Apply an iterative approach.

▶ Start at an arbitrary location.

▶ “Walk downhill”, towards
minimum.

x

0.20.0 0.2 0.4 0.6 0.8 1.0

y

0.25
0.00

0.25
0.50

0.75
1.00

1.25

10
11
12
13
14
15
16
17

Which way is down?

▶ Consider a differentiable
function 𝑓(𝑥, 𝑦).

▶ We are standing at 𝑃 = (𝑥0, 𝑦0).

▶ In a small region around 𝑃, 𝑓
looks like a plane.

▶ Slope of plane in 𝑥, 𝑦
directions:

𝜕𝑓
𝜕𝑥(𝑥0, 𝑦0)

𝜕𝑓
𝜕𝑦(𝑥0, 𝑦0)

The Gradient

▶ Let 𝑓 ∶ ℝ𝑑 → ℝ be differentiable. The gradient of
𝑓 at ⃗𝑥 is defined:

∇⃗𝑓(⃗𝑥) = (𝜕𝑓𝜕𝑥1
(⃗𝑥), 𝜕𝑓𝜕𝑥2

(⃗𝑥), … , 𝜕𝑓𝜕𝑥𝑑
(⃗𝑥))

𝑇

▶ Note: ∇⃗𝑓(⃗𝑥) is a function mapping ℝ𝑑 → ℝ𝑑.

Which way is down?

▶ ∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest ascent at (𝑥0, 𝑦0).

▶ −∇⃗𝑓(𝑥0, 𝑦0) points in direction
of steepest descent at (𝑥0, 𝑦0).

Gradient Properties

▶ The gradient is used in the linear approximation
of 𝑓:

𝑓(𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦) ≈ 𝑓(𝑥0, 𝑦0) + �⃗� ⋅ ∇⃗𝑓(𝑥0, 𝑦0)

▶ Important properties:
▶ ∇⃗𝑓(⃗𝑥) points in direction of steepest ascent at ⃗𝑥.
▶ −∇⃗𝑓(⃗𝑥) points in direction of steepest descent at ⃗𝑥.
▶ In directions orthogonal to ∇⃗𝑓(⃗𝑥), 𝑓 does not change!
▶ ‖∇⃗𝑓(⃗𝑥)‖ measures steepness of ascent

Gradient Descent

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0.

▶ Until convergence, repeat:
▶ Compute gradient of 𝑓 at ⃗𝑥(𝑖); that is, compute ∇⃗𝑓(⃗𝑥(𝑖)).
▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂∇⃗𝑓(⃗𝑥(𝑖)).

▶ When do we stop?
▶ When difference between ⃗𝑥(𝑖) and ⃗𝑥(𝑖+1) is negligible.
▶ I.e., when ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑖+1)‖ is small.

def gradient_descent(
gradient, x, learning_rate=.01,
threshold=.1e-4

):
while True:

x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:

break
x = x_new

return x

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Backprop Revisited

▶ The weights of a neural network can be trained
using gradient descent.

▶ This requires the gradient to be calculated
repeatedly; this is where backprop enters.

▶ Sometimes people use “backprop” to mean
“backprop + SGD”, but this is not strictly correct.

Backprop Revisited

▶ Consider training a NN using the square loss:

∇�⃗�𝑅(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1

𝜕ℓ
𝜕𝐻∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)

= 2𝑛

𝑛

∑
𝑖=1
(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖) ∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)

Backprop Revisited

▶ Interpretation:

∇�⃗�𝑅(�⃗�) =
2
𝑛

𝑛

∑
𝑖=1
(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)⏟

Error

∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)⏟
Blame

▶ When used in SGD, backprop “propagates error
backward” in order to update weights.

Difficulty of Training NNs
▶ Gradient descent is guaranteed to find optimum
when objective function is convex.2

2Assuming it is properly initialized

Difficulty of Training NNs

▶ When activations are non-linear, neural network
risk is highly non-convex:

Non-Convexity

▶ When 𝑅 is non-convex, GD can get “stuck” in local
minima.

▶ Solution depends on initialization.

▶ More sophisticated optimizers, using
momentum, adaptation, better initialization, etc.

▶ Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs
▶ Deep networks can suffer from the problem of
vanishing gradients: if 𝑤 is a weight at the
“front” of the network, 𝜕𝐻/𝜕𝑤 can be very small

𝑥1

𝑥2

𝑥3

∑

∑

∑

∑

∑

∑

∑

∑

Vanishing Gradients

▶ If 𝜕𝐻/𝜕𝑤 is always close to zero, 𝑤 is updated
very slowly by gradient descent.

▶ In short: early layers are slower to train.

▶ One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients

z

Sigmoid

z

ReLU

Lecture 15 | Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

▶ In ML, we often want to minimize a risk function:

𝑅(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

Observation

▶ The gradient of the risk function is a sum of
gradients:

∇⃗𝑅(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

▶ One term for each point in training data.

Problem

▶ In machine learning, the number of training
points 𝑛 can be very large.

▶ Computing the gradient can be expensive when
𝑛 is large.

▶ Therefore, each step of gradient descent can be
expensive.

Idea

▶ The (full) gradient of the risk uses all of the
training data:

∇𝑅(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
∇ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

▶ It is an average of 𝑛 gradients.

▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.

Stochastic Gradient

▶ Choose a random subset (mini-batch) 𝐵 of the
training data.

▶ Compute a stochastic gradient:

∇𝑅(�⃗�) ≈ ∑
𝑖∈𝐵

∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

Stochastic Gradient

∇𝑅(�⃗�) ≈ ∑
𝑖∈𝐵

∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.

▶ Bad: it is a (random) approximation of the full
gradient, noisy.

Stochastic Gradient Descent (SGD)
for ERM

▶ Pick arbitrary starting point ⃗𝑥(0), learning rate
parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.

▶ Until convergence, repeat:
▶ Randomly sample a batch 𝐵 of 𝑚 training data points
(on each iteration).

▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):

�⃗� = ∑
𝑖∈𝐵

∇⃗ℓ(𝐻(⃗𝑥(𝑖); �⃗�), 𝑦𝑖)

▶ Update ⃗𝑥(𝑖+1) = ⃗𝑥(𝑖) − 𝜂�⃗�

Idea

▶ In practice, a stochastic gradient often works
well enough.

▶ It is better to take many noisy steps quickly than
few exact steps slowly.

Batch Size

▶ Batch size 𝑚 is a parameter of the algorithm.

▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.

▶ Extreme case when 𝑚 = 1 will still work.

&
v

V
L

L

2 &
↓

2

2 C L

v L

v<-L

Usefulness of SGD

▶ SGD allows learning on massive data sets.

▶ Useful even when exact solutions available.
▶ E.g., least squares regression / classification.

Training NNs in Practice

▶ There are several Python packages for training
NNs:

▶ PyTorch
▶ Tensorflow / Keras

▶ This week’s discussion was a Tensorflow tutorial.

