DST $140 B$
Representation Learning Lecture 15 | Part 1
Back propagation

Gradient of a Network

\checkmark We want to compute the gradient $\nabla_{\vec{w}} H$.

- That is, $\partial H / \partial W_{i j}^{(\ell)}$ and $\partial H / \partial b_{i}^{(\ell)}$ for all valid i, j, ℓ.
- A network is a composition of functions.
- We'll make good use of the chain rule.

Recall: The Chain Rule

$$
\begin{aligned}
\frac{d}{d x} f(g(x)) & =\frac{d f}{d g} \frac{d g}{d x} \\
& =f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

Some Notation

- We'll consider an arbitrary node in layer ℓ of a neural network.
- Let g be the activation function.
- n_{ℓ} denotes the number of nodes in layer ℓ.

Arbitrary Node

Claim \#1

$$
\frac{\partial H}{\partial W_{i j}^{(\ell)}}=\frac{\partial H}{\partial z_{j}^{(\ell)}} a_{i}^{(\ell-1)}
$$

Claim \#2

$$
\frac{\partial H}{\partial z_{j}^{(l)}}=\frac{\partial H}{\partial a_{j}^{(l)}} g^{\prime}\left(z_{j}^{\ell}\right)
$$

Claim \#3

$$
\frac{\partial H}{\partial a_{j}^{(\ell)}}=\sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_{k}^{(\ell+1)}} W_{j k}^{(\ell+1)}
$$

Exercise

What is $\partial H / \partial b_{j}^{(\ell)}$?

General Formulas

- For any node in any neural network ${ }^{1}$, we have the following recursive formulas:

$$
\begin{aligned}
\frac{\partial H}{\partial a_{j}^{(\ell)}} & =\sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_{k}^{(\ell+1)}} W_{j k}^{(\ell+1)} \\
\frac{\partial H}{\partial z_{j}^{(\ell)}} & =\frac{\partial H}{\partial a_{j}^{(\ell)}} G^{\prime}\left(z_{j}^{\ell}\right) \\
\frac{\partial H}{\partial W_{i j}^{(\ell)}} & =\frac{\partial H}{\partial z_{j}^{(\ell)}} a_{i}^{(\ell-1)} \\
\frac{\partial H}{\partial b_{j}^{(\ell)}} & =\frac{\partial H}{\partial z_{j}^{(\ell)}}
\end{aligned}
$$

Main Idea

The derivatives in layer ℓ depend on derivatives in layer $\ell+1$.

Backpropagation

- Idea: compute the derivatives in last layers, first.
- That is:
- Compute derivatives in last layer, ℓ; store them.
$>$ Use to compute derivatives in layer $\ell-1$.
$>$ Use to compute derivatives in layer $\ell-2$.

Backpropagation

Given an input \vec{x} and a current parameter vector \vec{w} :

1. Evaluate the network to compute $z_{i}^{(\ell)}$ and $a_{i}^{(\ell)}$ for all nodes.
2. For each layer ℓ from last to first:

- Compute $\frac{\partial H}{\partial a_{j}^{(())}}=\sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_{k}^{(\ell+1)}} W_{j k}^{(\ell+1)}$
- Compute $\frac{\partial H}{\partial z_{j}^{(l)}}=\frac{\partial H}{\partial a_{j}^{(l)}} g^{\prime}\left(z_{j}^{\ell}\right)$
- Compute $\frac{\partial H}{\partial W_{i j}^{(i)}}=\frac{\partial H}{\partial z_{j}^{(P)}} a_{i}^{(\ell-1)}$
- Compute $\frac{\partial H}{\partial b_{j}^{(0)}}=\frac{\partial H}{\partial z_{j}^{(P)}}$

Example

Compute the entries of the gradient given:

$$
W^{(1)}=\left(\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right) \quad W^{(2)}=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right) \quad W^{(3)}=\binom{3}{-2} \quad \vec{x}=(2,1)^{T} \quad g(z)=\operatorname{ReLU}
$$

$$
\frac{\partial H}{\partial a_{j}^{(\ell)}}=\sum_{k=1}^{n_{\ell+1}} \frac{\partial H}{\partial z_{k}^{(\ell+1)}} W_{j k}^{(\ell+1)} \quad \frac{\partial H}{\partial z_{j}^{(\ell)}}=\frac{\partial H}{\partial a_{j}^{(\ell)}} g^{\prime}\left(z_{j}^{\ell}\right) \quad \frac{\partial H}{\partial W_{i j}^{(\ell)}}=\frac{\partial H}{\partial z_{j}^{(\ell)}} a_{i}^{(\ell-1)}
$$

Aside: Derivative of ReLU

$$
\begin{aligned}
g(z) & =\max \{0, z\} \\
g^{\prime}(z) & = \begin{cases}0, & z<0 \\
1, & z>0\end{cases}
\end{aligned}
$$

Summary: Backprop

- Backprop is an algorithm for efficiently computing the gradient of a neural network
- It is not an algorithm you need to carry out by hand: your NN library can do it for you.

DEC $140 B$ Representation Learning Lecture 15 | Part 2
Gradient Descent for NN Training

Empirical Risk Minimization

0 . Collect a training set, $\left\{\left(\vec{x}^{(i)}, y_{i}\right)\right\}$

1. Pick the form of the prediction function, H.

- E.g., a neural network, H.

2. Pick a loss function.
3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk

- To minimize risk, we often use vector calculus.

E Either set $\nabla_{\vec{w}} R(\vec{w})=0$ and solve...

- Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
\Rightarrow Recall, $\nabla_{\vec{w}} R(\vec{w})=\left(\partial R / \partial w_{0}, \partial R / \partial w_{1}, \ldots, \partial R / \partial w_{d}\right)^{T}$

In General

- Let ℓ be the loss function, let $H(\vec{x} ; \vec{w})$ be the prediction function.
- The empirical risk:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- Using the chain rule:

$$
\nabla_{\vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial l}{\partial H} \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)
$$

Training Neural Networks

- For neural networks with nonlinear activations, the risk $R(\vec{w})$ is typically complicated.
- The mininimizer cannot be found directly.
- Instead, we use iterative methods, such as gradient descent.

Iterative Optimization

- To minimize a function $f(\vec{x})$, we may try to compute $\vec{\nabla} f(\vec{x})$; set to 0 ; solve.
- Often, there is no closed-form solution.
- How do we minimize f ?

Example

Consider $f(x, y)=e^{x^{2}+y^{2}}+(x-2)^{2}+(y-3)^{2}$.

Example

- Try solving $\vec{\nabla} f(x, y)=0$.
- The gradient is:

$$
\vec{\nabla} f(x, y)=\binom{2 x e^{x^{2}+y^{2}}+2(x-2)}{2 y e^{x^{2}+y^{2}}+2(y-3)}
$$

- Can we solve the system?

$$
\begin{aligned}
& 2 x e^{x^{2}+y^{2}}+2(x-2)=0 \\
& 2 y e^{x^{2}+y^{2}}+2(y-3)=0
\end{aligned}
$$

Example

- Try solving $\vec{\nabla} f(x, y)=0$.
- The gradient is:

$$
\vec{\nabla} f(x, y)=\binom{2 x e^{x^{2}+y^{2}}+2(x-2)}{2 y e^{x^{2}+y^{2}}+2(y-3)}
$$

- Can we solve the system? Not in closed form.

$$
\begin{aligned}
& 2 x e^{x^{2}+y^{2}}+2(x-2)=0 \\
& 2 y e^{x^{2}+y^{2}}+2(y-3)=0
\end{aligned}
$$

Idea

- Apply an iterative approach.
- Start at an arbitrary location.
- "Walk downhill", towards minimum.

Which way is down?

- Consider a differentiable function $f(x, y)$.
- We are standing at $P=\left(x_{0}, y_{0}\right)$.
- In a small region around P, f looks like a plane.

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)
$$

The Gradient

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be differentiable. The gradient of f at \vec{x} is defined:

$$
\vec{\nabla} f(\vec{x})=\left(\frac{\partial f}{\partial x_{1}}(\vec{x}), \frac{\partial f}{\partial x_{2}}(\vec{x}), \ldots, \frac{\partial f}{\partial x_{d}}(\vec{x})\right)^{\top}
$$

Note: $\vec{\nabla} f(\vec{x})$ is a function mapping $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

Which way is down?

- $\vec{\nabla} f\left(x_{0}, y_{0}\right)$ points in direction of steepest ascent at $\left(x_{0}, y_{0}\right)$.
- $-\vec{\nabla} f\left(x_{0}, y_{0}\right)$ points in direction of steepest descent at (x_{0}, y_{0}).

Gradient Properties

- The gradient is used in the linear approximation of f :

$$
f\left(x_{0}+\delta_{x}, y_{0}+\delta_{y}\right) \approx f\left(x_{0}, y_{0}\right)+\vec{\delta} \cdot \vec{\nabla} f\left(x_{0}, y_{0}\right)
$$

- Important properties:
- $\vec{\nabla} f(\vec{x})$ points in direction of steepest ascent at \vec{x}.
- $-\vec{\nabla} f(\vec{x})$ points in direction of steepest descent at \vec{x}.
- In directions orthogonal to $\vec{\nabla} f(\vec{x}), f$ does not change!
- \| $\|\vec{\nabla} f(\vec{x})\|$ measures steepness of ascent

Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$.
- Until convergence, repeat:
$>$ Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
\Rightarrow Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{\nabla} f\left(\vec{x}^{(i)}\right)$.
- When do we stop?
\Rightarrow When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
$>$ I.e., when $\left\|\vec{x}^{(i)}-\vec{x}^{(i+1)}\right\|$ is small.

```
def gradient_descent(
    gradient, x, learning_rate=.01,
    threshold=.1e-4
):
```

```
while True:
```

while True:
x_new = x - learning_rate * gradient(x)
x_new = x - learning_rate * gradient(x)
if np.linalg.norm(x - x_new) < threshold:
if np.linalg.norm(x - x_new) < threshold:
break
break
x = x_new
x = x_new
return x

```
    return x
```


Backprop Revisited

- The weights of a neural network can be trained using gradient descent.
- This requires the gradient to be calculated repeatedly; this is where backprop enters.
- Sometimes people use "backprop" to mean "backprop + SGD", but this is not strictly correct.

Backprop Revisited

- Consider training a NN using the square loss:

$$
\begin{aligned}
\nabla_{\vec{w}} R(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial l}{\partial H} \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right) \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)
\end{aligned}
$$

Backprop Revisited

- Interpretation:

$$
\nabla_{\vec{w}} R(\vec{w})=\frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)}_{\text {Error }} \underbrace{\nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)}_{\text {Blame }}
$$

- When used in SGD, backprop "propagates error backward" in order to update weights.

Difficulty of Training NNs

- Gradient descent is guaranteed to find optimum when objective function is convex. ${ }^{2}$

[^0]
Difficulty of Training NNs

- When activations are non-linear, neural network risk is highly non-convex:

Non-Convexity

- When R is non-convex, GD can get "stuck" in local minima.
- Solution depends on initialization.
- More sophisticated optimizers, using momentum, adaptation, better initialization, etc.
- Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

- Deep networks can suffer from the problem of vanishing gradients: if w is a weight at the "front" of the network, $\partial H / \partial w$ can be very small

Vanishing Gradients

- If $\partial H / \partial w$ is always close to zero, w is updated very slowly by gradient descent.
- In short: early layers are slower to train.
- One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients

DEC $140 B$ Representation Learning Lecture $15 \mid$ Part 3
Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

- In ML, we often want to minimize a risk function:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Observation

- The gradient of the risk function is a sum of gradients:

$$
\vec{\nabla} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \vec{\nabla} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- One term for each point in training data.

Problem

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

- The (full) gradient of the risk uses all of the training data:

$$
\nabla R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- It is an average of n gradients.
- Idea: instead of using all n points, randomly choose <<n.

Stochastic Gradient

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$
\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} P\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Stochastic Gradient

$$
\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} P\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

\downarrow Good: if $|B| \ll n$, this is much faster to compute.

- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$, batch size $m \ll n$.
- Until convergence, repeat:
- Randomly sample a batch B of m training data points (on each iteration).
$>$ Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$
\vec{g}=\sum_{i \in B} \vec{\nabla} \ell\left(H\left(\vec{x}^{(i)} ; \vec{W}\right), y_{i}\right)
$$

$>$ Update $\vec{x}^{(i+1)}=\vec{x}^{(i)}-\eta \vec{g}$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size m is a parameter of the algorithm.
- The larger m, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when $m=1$ will still work.

Usefulness of SGD

- SGD allows learning on massive data sets.
- Useful even when exact solutions available.
- E.g., least squares regression / classification.

Training NNs in Practice

- There are several Python packages for training NNs:
- PyTorch
- Tensorflow / Keras
- This week's discussion was a Tensorflow tutorial.

[^0]: ${ }^{2}$ Assuming it is properly initialized

