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Autoencoders



Generalizing PCA

▶ We started the quarter with PCA.

▶ PCA is a linear method.

▶ We can generalize upon PCA to derive nonlinear
representation learners.



Representation Learning

▶ At a high level, representation learning finds an
encoding function encode( ⃗𝑥) ∶ ℝ𝑑 → ℝ𝑘.

▶ Ideally, this function captures useful aspects of
the data distribution.



Example: PCA

▶ In PCA, we encode a point ⃗𝑥 by projecting it onto
the top 𝑘 eigenvectors of data covariance matrix:

encode( ⃗𝑥) = 𝑈𝑇 ⃗𝑥



Decoding

▶ Encoding can decrease dimensionality.

▶ Intuitively, we may want to preserve as much
“information” about ⃗𝑥 as possible.

▶ We should be able to decode the encoding and
reconstruct the original point, approximately.

⃗𝑥 ≈ decode(encode( ⃗𝑥))



Example: PCA

▶ In PCA, given a point ⃗𝑧 ∈ ℝ𝑘 in the new
representation, the reconstruction is:

decode( ⃗𝑧) = 𝑈 ⃗𝑧



Representation Learning

▶ Goal: find an encoder (and decoder) such that

encode(decode( ⃗𝑥)) ≈ ⃗𝑥



Reconstruction Error

▶ In general, decode(encode( ⃗𝑥)) will not be exactly
equal to ⃗𝑥.

▶ One way of quantifying the difference w.r.t. data
is the (ℓ2) reconstruction error:

𝑛

∑
𝑖=1
‖ ⃗𝑥(𝑖) − decode(encode( ⃗𝑥(𝑖)))‖2



Note

▶ Of course, it is trivial to find an encoder/decoder
with zero reconstruction error:

encode( ⃗𝑥) = ⃗𝑥 = decode( ⃗𝑥)

▶ Such an encoder is not useful.

▶ Instead, we constrain the form of the encoder so
that it cannot simply copy the input.



Example: PCA

▶ Assume encode( ⃗𝑥) = 𝑈 ⃗𝑥, for some matrix 𝑈
whose 𝑘 ≤ 𝑑 columns are orthonormal.
▶ That is, the encoding is an orthogonal projection.

▶ Goal: find 𝑈 to minimize reconstruction error on
a dataset ⃗𝑥(1), … , ⃗𝑥(𝑑).

▶ Solution: pick columns of 𝑈 to be top 𝑘
eigenvectors of data covariance matrix.



Now

▶ encode( ⃗𝑥) = 𝑈 ⃗𝑥 is a linear encoding function.

▶ What if we let encode be nonlinear?

▶ That is, let’s generalize PCA.



Encoder as a Neural Network

▶ Assume encode( ⃗𝑥) is a (deep) neural network.

▶ Output is not a single number, but 𝑘 numbers.
▶ I.e., a vector in ℝ𝑘

▶ Can use nonlinear activations, have more than
one layer.



Encoder as a Neural Network

𝑥1

𝑥2

𝑥3

𝑥4

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3



Encoder as a Neural Network

▶ The output of the encoder is the new
representation.

▶ To train the encoder, we’ll need a decoder.



Decoder as a Neural Network

▶ Assume decode( ⃗𝑧) is a (deep) neural network.

▶ Output is not a single number, but 𝑑 numbers.
▶ Same dimensionality as original input, ⃗𝑥.
▶ I.e., a vector in ℝ𝑑

▶ Can use nonlinear activations, have more than
one layer.



Decoder as a Neural Network

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(2)4 𝑎(2)4



decode(encode( ⃗𝑥)) as a NN

▶ Together, decode(encode( ⃗𝑥)) is a neural network
𝐻( ⃗𝑥) ∶ ℝ𝑑 → ℝ𝑑.



decode(encode( ⃗𝑥)) as a NN

𝑥1

𝑥2

𝑥3

𝑥4

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(2)4 𝑎(2)4



Training

𝑥1

𝑥2

𝑥3

𝑥4

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(2)4 𝑎(2)4

▶ We want 𝐻( ⃗𝑥) ≈ ⃗𝑥
▶ One approach: train network to
minimize reconstruction error.
𝑛

∑
𝑖=1
‖ ⃗𝑥(𝑖) − 𝐻( ⃗𝑥(𝑖))‖2 =

𝑛

∑
𝑖=1

𝑑

∑
𝑗=1
( ⃗𝑥(𝑖)𝑗 − (𝐻( ⃗𝑥(𝑖)))𝑗)2

=
𝑛

∑
𝑖=1

𝑑

∑
𝑗=1
( ⃗𝑥(𝑖)𝑗 − 𝑎

(2)
𝑗 ( ⃗𝑥(𝑖)))2



Training

▶ The network can be trained using gradient-based
methods.
▶ E.g., stochastic gradient descent.

▶ Note: this is an unsupervised learning problem.



Autoencoders

▶ When the encoder/decoder are NNs,
𝐻( ⃗𝑥) = decode(encode( ⃗𝑥)) is an autoencoder.



Generalizing PCA
▶ We can view autoencoders as generalizations of
PCA.

▶ Consider again the encoder that performs an
orthogonal projection:

encode( ⃗𝑥) = 𝑈𝑇 ⃗𝑥

decode( ⃗𝑧) = 𝑈 ⃗𝑧

▶ encode/decode are neural networks (with linear
activations).



𝑥1

𝑥2

𝑥3

𝑥4

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(2)4 𝑎(2)4



Exercise

True/False: training an autoencoder to mini-
mize reconstruction error will result in the same
encode( ⃗𝑥) function as PCA.



Answer: False

▶ PCA minimizes reconstruction error subject to
the constraint that the columns of 𝑈 are
orthonormal.

▶ Without the orthonormality constraint, the
autoencoder learns a different encoding.

▶ However, the autoencoder learns a
(non-orthogonal) projection into the same space
as PCA.



In other words...

▶ PCA is an autoencoder trained with an additional
orthonormality constraint.

▶ Cannot easily be learned by gradient descent;
find eigenvectors instead.



Uses of Autoencoders

▶ Like PCA, autoencoders can be used for
dimensionality reduction.

▶ Unlike PCA, autoencoders can learn nonlinear
maps.

▶ Encoded data can be used as input to predictive
model, etc.



Dimensionality Reduction

▶ If the dimensionality of the encoder is the same
as the dimensionality of ⃗𝑥, the autoencoder can
learn to simply reproduce the input.

𝑥1

𝑥2

𝑥3

𝑥4

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(1)4 𝑎(1)4

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(2)4 𝑎(2)4



Dimensionality Reduction

▶ As such, we choose number of hidden nodes < 𝑑.
𝑥1

𝑥2

𝑥3

𝑥4

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(2)4 𝑎(2)4

▶ Called an undercomplete autoencoder.



Example

1

1By Michela Massi - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=80176900



Other Uses
▶ However, sometimes it is useful for hidden layer
to have greater dimensionality.

𝑥1

𝑥2

𝑥3

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(1)4 𝑎(1)4

𝑧(1)5 𝑎(1)5

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3



Denoising Autoencoders

▶ One such case is in denoising autoencoders.

▶ Idea: train an autoencoder to remove noise.

▶ Add random noise to each ⃗𝑥(𝑖) to get 𝑥̃(𝑖).

▶ Train network so that 𝐻(𝑥̃(𝑖)) ≈ ⃗𝑥.



Lecture 17 | Part 2

Conclusion of DSC 140B



Recap

▶ DSC 140B was about representation learning.

▶ We saw PCA, Laplacian Eigenmaps, RBF Networks,
neural networks and deep learning

▶ Learned ML methods, but also theoretical tools
for understanding why other ML methods work



More Deep Learning

▶ We have only scratched the surface of deep
learning.
▶ LSTMs, transformer models, graph neural networks,
deep RL, GANs, etc.

▶ In this class, we focused on the fundamental
principles behind NNs.

▶ You might consider taking CSE 151B.



Thanks!


