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Learning in the 1950s
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Rosenblatt’s Perceptron
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The Task



NEW NAVY DRVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-
scious of its existence,

The embryo—the Weather|

Bureau's $2,000,000 “704" com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
d tration for v

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
\signer of the Perceptron, con-
|ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
Iman brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, :

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, But-‘
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

Withont Human Controls

The Navy said the perceptron
would be the- first non-liﬂngl
mechanism “capable of receiv-|
ing, recogniZing and identifying|
its surroundings without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. |

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce ti lves on an a y
line and which would be con-'

scious of their existence.

1958 New York
Times...

In today's demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learns by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q" for the left
squares and “O" for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a *self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.
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By the end of today...
We'll see how this machine worked.
We’'ll build one to recognize images.

We'll see what it’s limitations are.
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Learning to Predict
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Predicting Opinions

We often use the opinions of others to predict
our own.

But we don't hold all opinions equally...
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Movie Ratings

Friend A: “This movie was great!”
— | know I'll like it.

Friend B: “This movie was great!”
— | know | won't like it.
Still useful!

Friend C: “This movie was great!”
— | don’t know... they like every movie!
Not useful.
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Movie Ratings

Five of your friends rate a movie from 0-10:

X X X X X
GLRLWINO .
00N N WO

Task: What will you rate the movie?
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Prediction
Prediction is a core ML task.

Regression: output is a number.
Example: movie rating, future salary

Classification: output is a class label.
Example: like the movie? mango is ripe? (yes/no) —
binary
Example: species (cat, dog, mongoose) — multiclass
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Prediction Functions

Informally: we think our friends’ ratings predict
our own.

Formally: we think there is a function H that
takes our friend’s ratings X = (x;, X,, X3, X,,, X;)
and outputs a good prediction of our rating.

H(X) — prediction

H is called a prediction function.'

'0r, sometimes, a hypothesis function
13/ 94



Prediction Functions

Problem: There are infinitely many prediction
functions.

H1():<) = —?x1 +3X;

H,(X) = sin(X; - X, - X5+ X,, * X)

Hg()?) = /X * X3(x; = X,X; + 100)

How do we pick one?

2Most can’t even be expressed algebraically.
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The Fundamental Assumption of
Learning

Informally: The past will repeat itself.

Formally: A prediction function that made good
predictions in the past will continue to make
good predictions in the future®.

3This isn’t always true!
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Picking a Prediction Function

Idea: Use data to pick a prediction function that
worked well in the past.

We hope it generalizes to future predictions.

A function that did well in the past but does not
generalize is said to have overfit.

16/ 94



Training Data

Movie \ X; Xy X3 X, Xc \ You
#1 8 5 9 2 1 6
H2 3 5 7 8 2 8
H#3 17 5 2 3 3 9
#4 |0 5 3 8 27
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A Learning Meta-Algorithm

Given data, how do we choose a prediction
function?

One common strategy is empirical risk
minimization (ERM).
a.k.a., “minimizing expected loss”
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Empirical Risk Minimization (ERM)
Step 1: choose a hypothesis class
Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)
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Hypothesis Classes

A hypothesis class # is a set of possible
prediction functions.

By choosing a hypothesis class, we are saying
something about what the prediction function
should look like.

Examples:
H := linear functions
H :=functions of the form sin(w, x, +... X;X;)
‘H := decision trees of depth 10
‘H :=neural networks with one layer
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Why not just choose H to be the set of all possible
functions?
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Hypothesis Class Complexity

The more complex the hypothesis class, the
greater the danger of overfitting.
Think: polynomials of degree 10 versus 2.
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23/ 94



A Simple Prediction Function

We can go a long way by assuming our prediction
functions to be linear.

24 [ 94



A Simple Prediction Function

Five of your friends rate a movie from 0-10:

X X X X X
0NN WO

1
2
3
A
5

Predict the average: *
H(X) = (X, + X, + X3 + X, + X:)[5=(9+3+7+2+8)/5

“There is only one function in this hypothesis class: (x, + X, + ... + X;)/5
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Why is this a bad prediction function?
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A Better Hypothesis Class

A weighted “vote™

H(X) = W, X, + Wy X, + WyX3 + W, X, + WX,
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Suppose you are a cynic (you dislike everything).
How can the prediction function be changed to
take into account the fact that your ratings are
likely lower than average across the board?

H(X) = W, X, + WX, + WyX; + W, X, + W X,
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An Even Better Hypothesis Class:
Linear Prediction Functions

H(X) = Wy + W, X, + WoXy + WoXy + W, X, + WcXc

This is a linear prediction function.

Wy, W, ..., W are the parameters or weights.

W= (W, ..., W5)T is a parameter vector.
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Linear Predictors

X1
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Class of Linear Functions
There are infinitely many functions of the form
H(X) = Wy + W X, + W, X, + WyXy + W, X, + WcXc

Each one is completely determined by w.
Sometimes write H(X; W)

Example: w = (8,3,1,5,-2,-7)" specifies
H(X; W) = 8 + 3x, + 1x, + 5X3 = 2X, - 7Xc
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“Parameterization”
A very useful trick.

Searching all linear functions = searching over
W € R®
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In General

If there are d features, there are d + 1 parameters:

H(X) = Wy + W X, + WoX, + o+ W Xy

d
=Wy + z W;X;
i=1
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Linear Prediction and the Dot
Product

The augmented feature vector Aug(X) is the
vector obtained by adding a 1 to the front of X:
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Simplification

With augmentation, we can write as dot product:

H(X) = Wy + W X, + WoX, + o+ W Xy

= Aug(X) - w
]
Wy
X‘I
i =" Aug(X) =
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Geometric Meaning

It can be very useful to think geometrically when
reasoning about prediction algorithms.
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Example

A linear prediction function for salary.

H,(X) = $50,000 + (experience) x $8,000
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Regression

The surface of a prediction function H is the
surface made by plotting H(x) for all X.

If H is a linear prediction function, and>
X € R, then H(x) is a straight line.
X € R?, the surface is a plane.
X € RY, the surface is a d-dimensional hyperplane.

>when plotted in the original feature coordinate space!
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Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)
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Step #2: Choose a loss function
Suppose we assume prediction function is linear.
There are still infinitely-many possibilities.

We'll pick one that works well on training data.

What does “works well” mean?
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Example: Movie Ratings

Movie \ X; Xy X3 X, Xc \ You
#1 8 5 9 2 1 6
H2 3 5 7 8 2 8
H#3 17 5 2 3 3 9
#. [0 5 3 8 2| ?
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Quantifying Quality

Consider a training example (X, y.)

Notation: X% is the “ith training example”

)?}i) is the “jth entry of the ith training example”

The “right answer” is y;

Our prediction function outputs H(X(")

We measure the difference using a loss function.
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Loss Function

A loss function quantifies how wrong a single
prediction is.

L(H(X™), v,)

L(prediction for example i, correct answer for example i)
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Empirical Risk
A good H is good on average over entire data set.

The expected loss (or empirical risk) is one way
of measuring this:

1 n
R(H) = EZL H(XD), y)
i=1

Note: depends on H and the data!
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Loss Functions for Regression

We want H(X?) = y..

Absolute loss: |[H(X") - y.|

1

Square loss: (H(X") - y.)?

]

0 15

gx?cr.'t.nu.

45 [ 94



Mean Squared Error

Expected square loss (mean squared error):

n

Rag(H) = = > (HG) - )2
i=1

This is the empirical risk for the square loss.

Goal: find H minimizing MSE.
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Step #3: Minimize MSE

We want to find an H minimizing this:

Rug(H) = + > (HG) - )2

i=1

It helps to use linear assumption:
1 n
V) = 2
W = _51 w - Aug(x") - y.)
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Calculus

We want to find w that minimizes:

n

Z W - Aug(xX\") - y.)?

i=1

3|—\

Take the gradient, set to 5, solve.
Solution: the Normal Equations, w = (X!X) Xty
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X is the design matrix X:

Aug(Xx
X = Aug(x

Aug(x™

Design Matrix

1)4>

2)4>

)—>
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Note

There was a closed-form solution!

This is a direct consequence of using the mean
squared error.

Not true if we use, e.g., the mean absolute error.
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Why linear?
Easy to work with mathematically.
Harder to overfit.

But still quite powerful.
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Movie Ratings

Five of your friends rate a movie from 0-10:

x
coON N WO

Task: Will you like the movie? (yes / no)
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Classification

Linear prediction functions can be used in
classification, too.

H(X) = Wy + W, X, + WoX, + .+ WX,

Same ERM paradigm also useful.
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Classification

In classification, the output of the prediction
function is a discrete label.

Our linear prediction functions output real
numbers.

But we can use a linear prediction function as a
classifier by, e.g., thresholding.
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Example: Mango Ripeness

Predict whether a mango is ripe given greenness
and hardness.

Idea: gather a set of labeled training data.
Inputs along with correct output (i.e., “the answer”).

Greenness Hardness | Ripe

0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1
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A Classifier from a Regressor

Binary classification can be thought of as

regression where the targets are 1 and -1
(or0and1,or...)

H(X) outputs a real number. Use the sign
function to turn it into -1, 1:

1 z>0
sign(z)=4-1 z<0
0 otherwise

Final prediction: sign(H(X))
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Decision Boundary

The decision boundary is the place where the
output of H(x) switches from “yes” to “no”.

IfH>0 4w~ “yes”and H < 0 » “no”, the decision
boundary is where H = 0.

If H is a linear predictor and®
X € R, then the decision boundary is just a number.
X € R?, the boundary is a straight line.
X € RY, the boundary is a d - 1 dimensional (hyper)
plane.

®when plotted in the original feature coordinate space!
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Empirical Risk Minimization

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function

Step 3: minimize expected loss (empirical risk)
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Can we use the square loss for classification?

(HXD) - y,)?

63 /94



Least Squares and Outliers
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with

the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive 7
to outliers, unlike logistic regression.

’Bishop, Pattern Recognition and Machine Learning
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Loss Functions for (Binary)
Classification

H(X) is prediction, y; € {-1,1} is correct answer

Another loss function: 0-1 loss.

i o if sign(H(x™)) =y,
L(H(X()'yi))_{1 if sign(H(X™)) # y;

Expected 0-1 loss:

=li 0 if sign(H(X")) =y,
n& |1 if sign(H(XD) # y,
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0-1 Loss

The expected 0-1 loss is simply proportion of
misclassified points.
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Problem
The 0-1 loss is not differentiable.
Can't even use gradient descent...

In fact, NP-Hard to optimize expected 0-1loss in
general.
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Perceptron Loss

The perceptron loss is designed for binary
classification.

i 0, sign(H(X)) = sign(y)
L(H(X), y) = {|H(x)|, sign(H(X)) # sign(y)

Empirical expected perceptron loss (risk):

0, sign(H(X)) = sign(y)

Hiron(H(X), y) = {lH()?)l, sign(H(x)) # sign(y)
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Perceptron Training

There's no closed form solution for the w that
minimizes expected perceptron loss.
Unlike expected square loss.

Train iteratively using gradient descent.
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Perceptrons

A perceptron is a linear prediction function
trained using the perceptron loss.
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Loss Functions

There are many different loss functions for
classification.

Each leads to a different classifier:
Logistic Regression
Support Vector Machine
Perceptron
etc.

But that's for another class...
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Demo: MNIST

MNIST is a classic machine learning data set.
Many images of handwritten digits, 0-9.
Multiclass classification problem.

But we can make it binary: 3 vs. 7.
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Example MNIST Digit

Grayscale

28 x 28 pixels




Images as Vectors
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Images as Vectors
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Images as Vectors
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Images as Vectors
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Images as Vectors
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Images as Vectors
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Images as Vectors

//\

75/ 94



Images as Vectors
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Images as Vectors
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Images as Vectors

75/ 94



Images as Vectors
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Images as Vectors
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MNIST Feature Vectors
28 x 28 = 784 pixels
Each image is a vector in R78*

Each feature is intensity of single pixel
black - 0, white — 255

A very simple representation.
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Demo: MNIST

Use only images of 3s and 7s.
132 training images.
680 testing images.

Some minor tuning.
Added random noise for robustness.

Picked classification threshold automatically.
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Percepton Learning

Linear prediction function parameterized by w.

In this case, we can “reshape” w to be same size
as input image.
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Weight Vector

Recall that the prediction is a weighted vote:

H(X) = sign(w, + W, X, + W, X, + ... Wyg, X0, )

Positive — 7, Negative — 3

w; is the weight of pixel i
positive: if this pixel is bright, I think thisisa 7
negative: if this pixel is bright, | think thisis a 3
magnitude: confidence in prediction
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Perceptron Training
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Perceptron Training
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Perceptron Training
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Perceptron Training
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Perceptron Training
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Perceptron Weight Vector

| predict that this is a 3!

£

| predict that this is a 7! | predict that this is a 3!

P

Sl

y;
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Perceptron Results

Test accuracy: 97.3%
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Square Loss for Classification
What if we use square loss for classification?

We can, but will it work well?
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Results: Least Squares

Test Accuracy: 96.7% (marginally worse)

I think that this is a 3. I think that thisis a 7 I think that this is a 7
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Results: Least Squares

Misclassifications are telling.

I think that this is a 7 I think that thisis a 7 I think that thisis a 7.

86 /94



Least Squares Weight Vector

Can visualize weight of each pixel as an image.

Positive (7)
4] 5 10 15 20 25
04 | L | \ |

10 1
159

||
201 L

B : : I
Negative (3)
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Least Squares Weight Vector

| predict that this is a 7! | predict that this is a 3! | predict that this is a 7!

3@
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Hack

Idea: binary classification is just a special case of
regression, where output is either -1 or 1.

We can still minimize mean squared error.

Somewhat strange: penalizes “very correct”
predictions.

y.=1  HEDY =3  HE)=-1
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Classification as Regression
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>>> # assume X is augmented design matrix

>>> # y is array of labels (1 = ripe, -1 = not ripe)
>>> w = np.linalg.lstsq(X, vy)

>>> w

array([ o.78442482, -0.28064357, -0.19005338])

That is,

H(X) = 0.78 - 0.28 x greenness - 0.19 x hardness
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Comments

Binary classification in MNIST is easy.
Multiclass is a lot harder.

If the problem is easy, linear prediction functions
work well.

And it doesn’t matter so much which loss we use.
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Next

What if the problem isn't so easy?
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