
Lecture 2 | Part 1

Learning in the 1950s

1 / 94

Rosenblatt’s Perceptron

2 / 94

3 / 94

4 / 94

The Task

5 / 94

6 / 94

By the end of today...
▶ We’ll see how this machine worked.

▶ We’ll build one to recognize images.

▶ We’ll see what it’s limitations are.

7 / 94

Lecture 2 | Part 2

Learning to Predict

8 / 94

Predicting Opinions
▶ We often use the opinions of others to predict
our own.

▶ But we don’t hold all opinions equally...

9 / 94

Movie Ratings
▶ Friend A: “This movie was great!”

▶ → I know I’ll like it.

▶ Friend B: “This movie was great!”
▶ → I know I won’t like it.
▶ Still useful!

▶ Friend C: “This movie was great!”
▶ → I don’t know... they like every movie!
▶ Not useful.

10 / 94

Movie Ratings
▶ Five of your friends rate a movie from 0-10:

▶ 𝑥1: 9▶ 𝑥2: 3▶ 𝑥3: 7▶ 𝑥4: 2▶ 𝑥5: 8

▶ Task: What will you rate the movie?

11 / 94

Prediction
▶ Prediction is a core ML task.

▶ Regression: output is a number.
▶ Example: movie rating, future salary

▶ Classification: output is a class label.
▶ Example: like the movie? mango is ripe? (yes/no)→
binary

▶ Example: species (cat, dog, mongoose)→ multiclass

12 / 94

Prediction Functions
▶ Informally: we think our friends’ ratings predict
our own.

▶ Formally: we think there is a function 𝐻 that
takes our friend’s ratings ⃗𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)
and outputs a good prediction of our rating.

𝐻(⃗𝑥) → prediction

▶ 𝐻 is called a prediction function.1
1Or, sometimes, a hypothesis function

13 / 94

Prediction Functions
▶ Problem: There are infinitely many prediction
functions.
▶ 𝐻1(⃗𝑥) = −2𝑥1 + 3𝑥5
▶ 𝐻2(⃗𝑥) = sin(𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋅ 𝑥4 ⋅ 𝑥5)
▶ 𝐻3(⃗𝑥) = √𝑥1 + 𝑥3(𝑥1 − 𝑥2𝑥5 + 100)
▶ ...2

▶ How do we pick one?

2Most can’t even be expressed algebraically.
14 / 94

The Fundamental Assumption of
Learning

▶ Informally: The past will repeat itself.

▶ Formally: A prediction function that made good
predictions in the past will continue to make
good predictions in the future3.

3This isn’t always true!
15 / 94

Picking a Prediction Function
▶ Idea: Use data to pick a prediction function that
worked well in the past.

▶ We hope it generalizes to future predictions.

▶ A function that did well in the past but does not
generalize is said to have overfit.

16 / 94

Training Data
Movie 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 You
#1 8 5 9 2 1 6
#2 3 5 7 8 2 8
#3 1 5 2 3 3 9
#4 0 5 3 8 2 ?

17 / 94

A Learning Meta-Algorithm
▶ Given data, how do we choose a prediction
function?

▶ One common strategy is empirical risk
minimization (ERM).
▶ a.k.a., “minimizing expected loss”

18 / 94

Empirical Risk Minimization (ERM)
▶ Step 1: choose a hypothesis class

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

19 / 94

Hypothesis Classes
▶ A hypothesis class H is a set of possible
prediction functions.

▶ By choosing a hypothesis class, we are saying
something about what the prediction function
should look like.

▶ Examples:
▶ H ∶= linear functions
▶ H ∶= functions of the form sin(𝑤1𝑥1 + …𝑥5𝑥5)▶ H ∶= decision trees of depth 10
▶ H ∶= neural networks with one layer

20 / 94

Exercise
Why not just chooseH to be the set of all possible
functions?

21 / 94

Hypothesis Class Complexity
▶ The more complex the hypothesis class, the
greater the danger of overfitting.
▶ Think: polynomials of degree 10 versus 2.

▶ Occam’s Razor: assume 𝐻 is simple.

22 / 94

Lecture 2 | Part 3

Linear Regression

23 / 94

A Simple Prediction Function
▶ We can go a long way by assuming our prediction
functions to be linear.

24 / 94

A Simple Prediction Function
▶ Five of your friends rate a movie from 0-10:

▶ 𝑥1: 9▶ 𝑥2: 3▶ 𝑥3: 7▶ 𝑥4: 2▶ 𝑥5: 8

▶ Predict the average: 4
𝐻(⃗𝑥) = (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)/5 = (9 + 3 + 7 + 2 + 8)/5

4There is only one function in this hypothesis class: (𝑥1 + 𝑥2 + … + 𝑥5)/5
25 / 94

Exercise
Why is this a bad prediction function?

26 / 94

A Better Hypothesis Class
▶ A weighted “vote”:

𝐻(⃗𝑥) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5

27 / 94

Exercise

Suppose you are a cynic (you dislike everything).
How can the prediction function be changed to
take into account the fact that your ratings are
likely lower than average across the board?

𝐻(⃗𝑥) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5

28 / 94

An Even Better Hypothesis Class:
Linear Prediction Functions

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5

▶ This is a linear prediction function.

▶ 𝑤0, 𝑤1, … , 𝑤5 are the parameters or weights.

▶ 𝑤⃗ = (𝑤0, … , 𝑤5)𝑇 is a parameter vector.
29 / 94

Linear Predictors

30 / 94

Class of Linear Functions
▶ There are infinitely many functions of the form

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5

▶ Each one is completely determined by 𝑤⃗.
▶ Sometimes write 𝐻(⃗𝑥; 𝑤⃗)

▶ Example: 𝑤⃗ = (8, 3, 1, 5, −2, −7)𝑇 specifies

𝐻(⃗𝑥; 𝑤⃗) = 8 + 3𝑥1 + 1𝑥2 + 5𝑥3 − 2𝑥4 − 7𝑥5
31 / 94

“Parameterization”
▶ A very useful trick.

▶ Searching all linear functions ≡ searching over
𝑤⃗ ∈ ℝ6

32 / 94

In General
▶ If there are 𝑑 features, there are 𝑑 +1 parameters:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

= 𝑤0 +
𝑑
∑
𝑖=1
𝑤𝑖𝑥𝑖

33 / 94

Linear Prediction and the Dot
Product

▶ The augmented feature vector Aug(⃗𝑥) is the
vector obtained by adding a 1 to the front of ⃗𝑥:

⃗𝑥 = (
𝑥1
𝑥2
⋮
𝑥𝑑

) Aug(⃗𝑥) = (

1

𝑥1
𝑥2
⋮
𝑥𝑑

)

34 / 94

Simplification
▶ With augmentation, we can write as dot product:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑
= Aug(⃗𝑥) ⋅ 𝑤⃗

𝑤⃗ = ⎛⎜

⎝

𝑤0
𝑤1
⋮
𝑤𝑑

⎞⎟

⎠

Aug(⃗𝑥) =
⎛⎜⎜⎜⎜

⎝

1

𝑥1
𝑥2
⋮
𝑥𝑑

⎞⎟⎟⎟⎟

⎠

35 / 94

Geometric Meaning
▶ It can be very useful to think geometrically when
reasoning about prediction algorithms.

36 / 94

Example
▶ A linear prediction function for salary.

𝐻1(⃗𝑥) = $50,000 + (experience) × $8,000

37 / 94

Regression
▶ The surface of a prediction function 𝐻 is the
surface made by plotting 𝐻(⃗𝑥) for all ⃗𝑥.

▶ If 𝐻 is a linear prediction function, and5
▶ ⃗𝑥 ∈ 𝑅1, then 𝐻(𝑥) is a straight line.
▶ ⃗𝑥 ∈ ℝ2, the surface is a plane.
▶ ⃗𝑥 ∈ ℝ𝑑 , the surface is a 𝑑-dimensional hyperplane.

5when plotted in the original feature coordinate space!
38 / 94

Empirical Risk Minimization (ERM)
▶ Step 1: choose a hypothesis class

▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

39 / 94

Step #2: Choose a loss function
▶ Suppose we assume prediction function is linear.

▶ There are still infinitely-many possibilities.

▶ We’ll pick one that works well on training data.

▶ What does “works well” mean?

40 / 94

Example: Movie Ratings
Movie 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 You
#1 8 5 9 2 1 6
#2 3 5 7 8 2 8
#3 1 5 2 3 3 9
#4 0 5 3 8 2 ?

41 / 94

Quantifying Quality

▶ Consider a training example (⃗𝑥(𝑖), 𝑦𝑖)
▶ Notation: ⃗𝑥(𝑖) is the “𝑖th training example”
▶ ⃗𝑥(𝑖)𝑗 is the “𝑗th entry of the 𝑖th training example”

▶ The “right answer” is 𝑦𝑖

▶ Our prediction function outputs 𝐻(⃗𝑥(𝑖))

▶ We measure the difference using a loss function.
42 / 94

Loss Function
▶ A loss function quantifies how wrong a single
prediction is.

𝐿(𝐻(⃗𝑥(𝑖)), 𝑦𝑖)
𝐿(prediction for example 𝑖, correct answer for example 𝑖)

43 / 94

Empirical Risk
▶ A good 𝐻 is good on average over entire data set.

▶ The expected loss (or empirical risk) is one way
of measuring this:

𝑅(𝐻) = 1𝑛
𝑛
∑
𝑖=1
𝐿(𝐻(⃗𝑥(𝑖)), 𝑦𝑖)

▶ Note: depends on 𝐻 and the data!
44 / 94

Loss Functions for Regression

▶ We want 𝐻(⃗𝑥(𝑖)) ≈ 𝑦𝑖.

▶ Absolute loss: |𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|

▶ Square loss: (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

45 / 94

Mean Squared Error
▶ Expected square loss (mean squared error):

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ This is the empirical risk for the square loss.

▶ Goal: find 𝐻 minimizing MSE.

46 / 94

47 / 94

Step #3: Minimize MSE
▶ We want to find an 𝐻 minimizing this:

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ It helps to use linear assumption:

𝑅sq(𝑤⃗) =
1
𝑛

𝑛
∑
𝑖=1
(𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖)2

48 / 94

Calculus
▶ We want to find 𝑤⃗ that minimizes:

𝑅sq(𝑤⃗) =
1
𝑛

𝑛
∑
𝑖=1
(𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ Take the gradient, set to 0⃗, solve.

▶ Solution: the Normal Equations, 𝑤⃗ = (𝑋𝑡𝑋)−1𝑋𝑡 ⃗𝑦

49 / 94

Design Matrix
▶ 𝑋 is the design matrix 𝑋 :

𝑋 = (
Aug(⃗𝑥(1))
Aug(⃗𝑥(2))

⋮ ⋮
Aug(⃗𝑥(𝑛))

) =
⎛⎜⎜⎜

⎝

1 𝑥(1)1 𝑥(1)2 … 𝑥(1)𝑑

1 𝑥(2)1 𝑥(2)2 … 𝑥(2)𝑑
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥(𝑛)1 𝑥(𝑛)2 … 𝑥(𝑛)𝑑

⎞⎟⎟⎟

⎠

50 / 94

Note
▶ There was a closed-form solution!

▶ This is a direct consequence of using the mean
squared error.

▶ Not true if we use, e.g., the mean absolute error.

51 / 94

Why linear?
▶ Easy to work with mathematically.

▶ Harder to overfit.

▶ But still quite powerful.

52 / 94

Lecture 2 | Part 4

Linear Classification

53 / 94

Movie Ratings
▶ Five of your friends rate a movie from 0-10:

▶ 𝑥1: 9▶ 𝑥2: 3▶ 𝑥3: 7▶ 𝑥4: 2▶ 𝑥5: 8

▶ Task: Will you like the movie? (yes / no)

54 / 94

Classification
▶ Linear prediction functions can be used in
classification, too.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ Same ERM paradigm also useful.

55 / 94

Classification
▶ In classification, the output of the prediction
function is a discrete label.

▶ Our linear prediction functions output real
numbers.

▶ But we can use a linear prediction function as a
classifier by, e.g., thresholding.

56 / 94

Example: Mango Ripeness
▶ Predict whether a mango is ripe given greenness
and hardness.

▶ Idea: gather a set of labeled training data.
▶ Inputs along with correct output (i.e., “the answer”).

Greenness Hardness Ripe
0.7 0.9 1
0.2 0.5 -1
0.3 0.1 -1
⋮ ⋮ ⋮

57 / 94

2 1 0 1 2 3 4 5 6
greenness

1

0

1

2

3

4

5

ha
rd

ne
ss

ripe
not ripe

58 / 94

A Classifier from a Regressor
▶ Binary classification can be thought of as
regression where the targets are 1 and -1
▶ (or 0 and 1, or ...)

▶ 𝐻(⃗𝑥) outputs a real number. Use the sign
function to turn it into −1, 1:

sign(𝑧) = {
1 𝑧 > 0
−1 𝑧 < 0
0 otherwise

▶ Final prediction: sign(𝐻(⃗𝑥))
59 / 94

Decision Boundary
▶ The decision boundary is the place where the
output of 𝐻(𝑥) switches from “yes” to “no”.
▶ If 𝐻 > 0 ↦ “yes” and 𝐻 < 0 ↦ “no”, the decision
boundary is where 𝐻 = 0.

▶ If 𝐻 is a linear predictor and6
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑 , the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

6when plotted in the original feature coordinate space!
60 / 94

2 1 0 1 2 3 4 5 6
greenness

1

0

1

2

3

4

5

ha
rd

ne
ss

ripe
not ripe

61 / 94

Empirical Risk Minimization
▶ Step 1: choose a hypothesis class

▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

62 / 94

Exercise
Can we use the square loss for classification?

(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

63 / 94

Least Squares and Outliers

7

7Bishop, Pattern Recognition and Machine Learning
64 / 94

Loss Functions for (Binary)
Classification

▶ 𝐻(⃗𝑥) is prediction, 𝑦𝑖 ∈ {−1, 1} is correct answer

▶ Another loss function: 0-1 loss.

𝐿(𝐻(⃗𝑥(𝑖), 𝑦𝑖)) = {
0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

▶ Expected 0-1 loss:

𝑅0-1(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
{0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

65 / 94

0-1 Loss
▶ The expected 0-1 loss is simply proportion of
misclassified points.

66 / 94

Problem
▶ The 0-1 loss is not differentiable.

▶ Can’t even use gradient descent...

▶ In fact, NP-Hard to optimize expected 0-1 loss in
general.

67 / 94

Perceptron Loss
▶ The perceptron loss is designed for binary
classification.

𝐿(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

▶ Empirical expected perceptron loss (risk):

𝐻tron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = sign(𝑦)
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ sign(𝑦)

68 / 94

Perceptron Training
▶ There’s no closed form solution for the 𝑤⃗ that
minimizes expected perceptron loss.
▶ Unlike expected square loss.

▶ Train iteratively using gradient descent.

69 / 94

Perceptrons
▶ A perceptron is a linear prediction function
trained using the perceptron loss.

70 / 94

Loss Functions
▶ There are many different loss functions for
classification.

▶ Each leads to a different classifier:
▶ Logistic Regression
▶ Support Vector Machine
▶ Perceptron
▶ etc.

▶ But that’s for another class...
71 / 94

Lecture 2 | Part 5

Classification Demo: MNIST

72 / 94

Demo: MNIST
▶ MNIST is a classic machine learning data set.

▶ Many images of handwritten digits, 0-9.

▶ Multiclass classification problem.

▶ But we can make it binary: 3 vs. 7.

73 / 94

Example MNIST Digit

▶ Grayscale

▶ 28 x 28 pixels

74 / 94

Images as Vectors

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

Images as Vectors

21

16

11

6

1

22

17

12

7

2

23

18

13

8

3

24

19

14

9

4

25

20

15

10

5

75 / 94

MNIST Feature Vectors
▶ 28 × 28 = 784 pixels

▶ Each image is a vector in ℝ784

▶ Each feature is intensity of single pixel
▶ black→ 0, white→ 255

▶ A very simple representation.

76 / 94

Demo: MNIST
▶ Use only images of 3s and 7s.

▶ 4132 training images.

▶ 680 testing images.

▶ Some minor tuning.
▶ Added random noise for robustness.
▶ Picked classification threshold automatically.

77 / 94

78 / 94

Percepton Learning
▶ Linear prediction function parameterized by 𝑤⃗.

▶ In this case, we can “reshape” 𝑤⃗ to be same size
as input image.

79 / 94

Weight Vector
▶ Recall that the prediction is a weighted vote:

𝐻(⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)

▶ Positive→ 7, Negative→ 3

▶ 𝑤𝑖 is the weight of pixel 𝑖▶ positive: if this pixel is bright, I think this is a 7
▶ negative: if this pixel is bright, I think this is a 3
▶ magnitude: confidence in prediction

80 / 94

Perceptron Training

81 / 94

Perceptron Training

81 / 94

Perceptron Training

81 / 94

Perceptron Training

81 / 94

Perceptron Training

81 / 94

Perceptron Training

81 / 94

Perceptron Weight Vector

82 / 94

Perceptron Results
▶ Test accuracy: 97.3%

83 / 94

Square Loss for Classification
▶ What if we use square loss for classification?

▶ We can, but will it work well?

84 / 94

Results: Least Squares
▶ Test Accuracy: 96.7% (marginally worse)

85 / 94

Results: Least Squares
▶ Misclassifications are telling.

86 / 94

Least Squares Weight Vector
▶ Can visualize weight of each pixel as an image.

87 / 94

Least Squares Weight Vector

88 / 94

Hack
▶ Idea: binary classification is just a special case of
regression, where output is either -1 or 1.

▶ We can still minimize mean squared error.

▶ Somewhat strange: penalizes “very correct”
predictions.

𝑦𝑖 = 1 𝐻(⃗𝑥(𝑖)) = 3 𝐻(⃗𝑥(𝑖)) = −1

89 / 94

Classification as Regression

90 / 94

>>> # assume X is augmented design matrix
>>> # y is array of labels (1 = ripe, -1 = not ripe)
>>> w = np.linalg.lstsq(X, y)
>>> w
array([0.78442482, -0.28064357, -0.19005338])

That is,

𝐻(⃗𝑥) = 0.78 − 0.28 × greenness − 0.19 × hardness

91 / 94

2 1 0 1 2 3 4 5 6
greenness

1

0

1

2

3

4

5

ha
rd

ne
ss

ripe
not ripe

92 / 94

Comments
▶ Binary classification in MNIST is easy.

▶ Multiclass is a lot harder.

▶ If the problem is easy, linear prediction functions
work well.

▶ And it doesn’t matter so much which loss we use.

93 / 94

Next
▶ What if the problem isn’t so easy?

94 / 94

