DSC
190
Machine Learning: Representations
Lecture 3 Part 1
An Embarrassment for the Perceptron

The Perceptron

The Perceptron

- The perceptron uses a linear prediction function:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d} \\
& =w_{0}+\sum_{i=1}^{d} w_{i} x_{i} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

- Trained using the perceptron loss.

Linear Decision Functions

- A linear prediction function H outputs a number.
- What if classes are +1 and -1 ?
- Can be turned into a decision function by taking:

$$
\operatorname{sign}(H(\vec{x}))
$$

- Decision boundary is where $H=0$
- Where the sign switches from positive to negative.

Decision Boundaries

- A linear decision function's decision boundary is linear.
- A line, plane, hyperplane, etc.

NEW NAYY DEVIGE LEARNS BY DOING

Psychologist Shows Embryo of Computer Designed to
Read and Grow Wiser

WASHINGTON, July 7 (UPI) -The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

The embryo-the Weather Bureau's $\$ 2,000,000$ " 704 " com-puter-learned to differentiate between right and left after fifty aftempts in the Navy's demonstration for newsmen.

The service said it would use this principle to build the first of its Perceptron thinking machines that will be able to read and write. It is expected to be finished in about a year at a cost of $\$ 100,000$.

Dr. Frank Rosenblatt, designer of the Perceptron, conducted the demonstration. He said the machine would be the first device to think as the human brain. As do human be-
ings, Perceptron will make mistakes at first, but will grow wiser as it gains experience, he said.
Dr: Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechanical space explorers.

Without Human Controls

The Navy said the perceptron would be the first non-living mechanism "capable of receiving, recognizing and identifying its surroundings without any human training or control."

The "brain" is designed to remember images and information it has perceived itself. Ordinary computers remember only what is fed into them on punch cards or magnetic tape.

Later Perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted.

Mr. Rosenblatt said in principle it would be possible to build brains that could reproduce themselves on an assembly line and which would be conscious of their existence.

1958 New York Times...

In today's demonstration, the " 704 " was fed two cards, one with squares marked on the left side and the other with squares on the right side.

Learns by Doing

In the first fifty trials, the machine made no distinction between them. It then started registering a " Q " for the left squares and " O " for the right squares.

Dr. Rosenblatt said he could explain why the machine learned only in highly technical terms. But he said the computer had undergone a "self-induced change in the wiring diagram."
The first Perceptron will have about 1,000 electronic "association cells" receiving electrical impulses from an eyelike scanning device with 400 photo-cells. The human brain has $10,000,000,000$ responsive cells, including $100,000,000$ connections with the eyes.

An Example: Parking Predictor

- Task: Predict (yes / no): Is there parking available at UCSD right now?
- What training data to collect? What features?

Useful Features

Time of day?

- Day's high temperature?

Exercise

Imagine a scatter plot of the training data with the two features:
$\Rightarrow x_{1}=$ time of day
$x_{2}=$ temperature
"yes" examples are green, "no" are red.
What does it look like?

Parking Data

Uh oh

- A linear decision function won't work.
- A perceptron (or linear SVM, logistic regression model, etc.) won't capture the trend
- What do we do?

Today's Question

- How do we learn non-linear patterns using linear prediction functions?

DSC 190
Machine Learning: Representations
Lecture 3 Part 2
Basis Functions

Representations

- We represented the data with two features: time and temperature
- In this representation, the trend is nonlinear.
- There is no good linear decision function
- Learning is "difficult".

Idea

- Idea: We'll make a new representation by creating new features from the old features.
- The "right" representation makes the problem easy again.
- What new features should we create?

New Feature Representation

- Linear prediction functions ${ }^{1}$ work well when relationship is linear
- When x is small we should predict -1
\Rightarrow When x is large we should predict +1
- But parking's relationship with time is not linear:
- When time is small we should predict +1
\Rightarrow When time is medium we should predict -1
- When time is large we should predict +1

[^0]
Exercise

How can we "transform" the time of day x_{1} to create a new feature x_{1}^{\prime} satisfying:

- When x_{1}^{\prime} is small, we should predict -1
- When x_{1}^{\prime} is large, we should predict +1

What about the temperature, x_{2} ?

Idea

- Transform "time" to "absolute time until/since Noon"
- Transform "temp." to "absolute difference between temp. and 72""

Basis Functions

- We will transform:
$>$ the time, x_{1}, to $\mid x_{1}$ - Noon \mid
- the temperature, x_{2}, to $\left|x_{2}-72^{\circ}\right|$
- Formally, we've designed non-linear basis functions:

$$
\begin{aligned}
& \varphi_{1}\left(x_{1}, x_{2}\right)=\mid x_{1}-\text { Noon } \mid \\
& \varphi_{2}\left(x_{1}, x_{2}\right)=\left|x_{2}-72^{\circ}\right|
\end{aligned}
$$

- In general a basis function φ maps $\mathbb{R}^{d} \rightarrow \mathbb{R}$

Feature Mapping

\Rightarrow Define $\vec{\varphi}(\vec{x})=\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x})\right)^{T} . \vec{\varphi}$ is a feature map

- Input: vector in "old" representation
- Output: vector in "new" representation
- Example:

$$
\vec{\varphi}\left(\left(10 \mathrm{a} . \mathrm{m} ., 75^{\circ}\right)^{T}\right)=\left(2 \text { hours, } 3^{\circ}\right)^{T}
$$

- $\vec{\varphi}$ maps raw data to a feature space.

Feature Space, Visualized

Exercise

Where does $\vec{\varphi} \operatorname{map} \vec{x}^{(1)}, \vec{x}^{(2)}$, and $\vec{x}^{(3)}$?

Solution

After the Mapping

- The basis functions φ_{1}, φ_{2} give us our "new" features.
- This gives us a new representation.
- In this representation, learning (classification) is easier.

Training

- Map each training example $\vec{x}^{(i)}$ to feature space, creating new training data:

$$
\vec{z}^{(1)}=\vec{\varphi}\left(\vec{x}^{(1)}\right), \quad \vec{z}^{(2)}=\vec{\varphi}\left(\vec{x}^{(2)}\right), \quad \ldots, \quad \vec{z}^{(n)}=\vec{\varphi}\left(\vec{x}^{(n)}\right)
$$

- Fit linear prediction function H in usual way:

$$
H_{f}(\vec{z})=w_{0}+w_{1} z_{1}+w_{2} z_{2}+\ldots+w_{d} z_{d}
$$

Training Data in Feature Space

Prediction

- If we have \vec{z} in feature space, prediction is:

$$
H_{f}(\vec{z})=w_{0}+w_{1} z_{1}+w_{2} z_{2}+\ldots+w_{d} z_{d}
$$

Prediction

- But if we have \vec{x} from original space, we must "convert" \vec{x} to feature space first:

$$
\begin{aligned}
H(\vec{x}) & =H_{f}(\vec{\varphi}(\vec{x})) \\
& =H_{f}\left(\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x}), \ldots, \varphi_{d}(\vec{x})\right)^{T}\right) \\
& =w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})+\ldots+w_{d} \varphi_{d}(\vec{x})
\end{aligned}
$$

Overview: Feature Mapping

- A basis function can involve any/all of the original features:

$$
\varphi_{3}(\vec{x})=x_{1} \cdot x_{2}
$$

- We can make more basis functions than original features:

$$
\vec{\varphi}(\vec{x})=\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x}), \varphi_{3}(\vec{x})\right)^{\top}
$$

Overview: Feature Mapping

1. Start with data in original space, \mathbb{R}^{d}.
2. Choose some basis functions, $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d^{\prime}}$
3. Map each data point to feature space $\mathbb{R}^{d^{\prime}}$:

$$
\vec{x} \mapsto\left(\varphi_{1}(\vec{x}), \varphi_{2}(\vec{x}), \ldots, \varphi_{d^{\prime}}(\vec{x})\right)^{t}
$$

4. Fit linear prediction function in new space:

$$
H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})
$$

$H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})$

Today's Question

- Q: How do we learn non-linear patterns using linear prediction functions?
- A: Use non-linear basis functions to map to a feature space.

Machine Learning: Representations
Lecture 3 Part 3
Basis Functions and Regression

By the way...

- You've (probably) seen basis functions used before.
- Linear regression for non-linear patterns in DSC 40A.

Example

Fitting Non-Linear Patterns

Fit function of the form

$$
H(x)=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+w_{4} x^{4}
$$

- Linear function of \vec{w}, non-linear function of x.

The Trick

- Treat x, x^{2}, x^{3}, x^{4} as new features.
- Create design matrix:

$$
x=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & x_{1}^{4} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & x_{2}^{4} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & x_{n}^{4}
\end{array}\right)
$$

- Solve $X^{\top} X \vec{w}=X^{\top} \vec{w}$ for \vec{w}, as usual.
- Works for more than just polynomials.

Another View

- We have changed the representation of a point:

$$
x \mapsto\left(x, x^{2}, x^{3}, x^{4}\right)
$$

- Basis functions:

$$
\varphi_{1}(x)=x \quad \varphi_{2}(x)=x^{2} \quad \varphi_{3}(x)=x^{3} \quad \varphi_{4}(x)=x^{4}
$$

Machine Learning: Representations
Lecture 3 Part 4
A Tale of Two Spaces

A Tale of Two Spaces

- The original space: where the raw data lies.
- The feature space: where the data lies after feature mapping $\vec{\varphi}$
- Remember: we fit a linear prediction function in the feature space.

Exercise

- In feature space, what does the decision boundary look like?
- What does the prediction function surface look like?

Decision Boundary in Feature Space ${ }^{2}$

${ }^{2}$ Fit by minimizing square loss

Prediction Surface in Feature Space

Exercise

- In the original space, what does the decision boundary look like?
- What does the prediction function surface look like?

Decision Boundary in Original Space ${ }^{3}$

[^1]
Prediction Surface in Original Space

time

Insight

$\Rightarrow H$ is a sum of basis functions, φ_{1} and φ_{2}.
$\Rightarrow H(\vec{x})=w_{0}+w_{1} \varphi_{1}(\vec{x})+w_{2} \varphi_{2}(\vec{x})$

- The prediction surface is a sum of other surfaces.
- Each basis function is a "building block".

Visualizing the Basis Function φ_{1}

$w_{0}+w_{1} \mid x_{1}-$ noon \mid

Visualizing the Basis Function φ_{2}

$\Rightarrow w_{0}+w_{2}\left|x_{2}-72^{\circ}\right|$

Visualizing the Prediction Surface

Exercise

The decision boundary has a single "pocket" where it is negative. Can it have more than one, assuming we use basis functions of the same form? What if we use more than two basis functions?

Answer: No!

- Recall: the sum of convex functions is convex.
- Each of our basis functions is convex.
- So the prediction surface will be convex, too.
- Limited in what patterns they can classify.

View: Function Approximation

- Find a function that is ≈ 1 near green points and ≈-1 near red points.

What's Wrong?

- We've discovered how to learn non-linear patterns using linear prediction functions.
- Use non-linear basis functions to map to a feature space.
- Something should bug you, though...

[^0]: ${ }^{1}$ Remember: they are weighted votes.

[^1]: ${ }^{3}$ Fit by minimizing square loss

