
Lecture 3 | Part 1

An Embarrassment for the Perceptron
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The Perceptron
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The Perceptron
▶ The perceptron uses a linear prediction function:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

= 𝑤0 +
𝑑
∑
𝑖=1
𝑤𝑖𝑥𝑖

= �⃗� ⋅ Aug( ⃗𝑥)

▶ Trained using the perceptron loss.
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Linear Decision Functions
▶ A linear prediction function 𝐻 outputs a number.

▶ What if classes are +1 and -1?

▶ Can be turned into a decision function by taking:

sign(𝐻( ⃗𝑥))

▶ Decision boundary is where 𝐻 = 0
▶ Where the sign switches from positive to negative.
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Decision Boundaries
▶ A linear decision function’s decision boundary is
linear.
▶ A line, plane, hyperplane, etc.
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An Example: Parking Predictor
▶ Task: Predict (yes / no): Is there parking
available at UCSD right now?

▶ What training data to collect? What features?
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Useful Features
▶ Time of day?

▶ Day’s high temperature?

▶ ...
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Exercise
Imagine a scatter plot of the training data with the
two features:
▶ 𝑥1 = time of day▶ 𝑥2 = temperature

“yes” examples are green, “no” are red.

What does it look like?
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Parking Data

x1 = time of day

x 2
 =

 te
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ra

tu
re

Found Parking
No Parking
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Uh oh

x1 = time of day

x 2
 =

 te
m

pe
ra

tu
re

Found Parking
No Parking ▶ A linear decision function

won’t work.

▶ A perceptron (or linear
SVM, logistic regression
model, etc.) won’t capture
the trend

▶ What do we do?
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Today’s Question
▶ How do we learn non-linear patterns using linear
prediction functions?
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Lecture 3 | Part 2

Basis Functions
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Representations
▶ We represented the data with two features: time
and temperature

▶ In this representation, the trend is nonlinear.
▶ There is no good linear decision function
▶ Learning is “difficult”.
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Idea
▶ Idea: We’ll make a new representation by
creating new features from the old features.

▶ The “right” representation makes the problem
easy again.

▶ What new features should we create?
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New Feature Representation
▶ Linear prediction functions1 work well when
relationship is linear
▶ When 𝑥 is small we should predict -1
▶ When 𝑥 is large we should predict +1

▶ But parking’s relationship with time is not linear:
▶ When time is small we should predict +1
▶ When time is medium we should predict -1
▶ When time is large we should predict +1

1Remember: they are weighted votes.
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Exercise
How can we “transform” the time of day 𝑥1 to
create a new feature 𝑥′1 satisfying:

▶ When 𝑥′1 is small, we should predict -1▶ When 𝑥′1 is large, we should predict +1

What about the temperature, 𝑥2?
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Idea

x1 = time of day

x 2
 =

 te
m

pe
ra

tu
re

Found Parking
No Parking

▶ Transform “time” to “absolute time
until/since Noon”

▶ Transform “temp.” to “absolute
difference between temp. and 72∘”
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Basis Functions
▶ We will transform:

▶ the time, 𝑥1, to |𝑥1 − Noon|▶ the temperature, 𝑥2, to |𝑥2 − 72∘|

▶ Formally, we’ve designed non-linear basis
functions:

𝜑1(𝑥1, 𝑥2) = |𝑥1 − Noon|
𝜑2(𝑥1, 𝑥2) = |𝑥2 − 72∘|

▶ In general a basis function 𝜑 maps ℝ𝑑 → ℝ
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Feature Mapping
▶ Define �⃗�( ⃗𝑥) = (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥))𝑇 . �⃗� is a feature map

▶ Input: vector in “old” representation
▶ Output: vector in “new” representation

▶ Example:

�⃗�((10a.m., 75∘)𝑇 ) = (2 hours, 3∘)𝑇

▶ �⃗� maps raw data to a feature space.
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Feature Space, Visualized

x1 = time of day

x 2
 =

 te
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pe
ra

tu
re

Found Parking
No Parking

1(x) = |time - noon|
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Exercise

Where does �⃗� map ⃗𝑥(1), ⃗𝑥(2), and ⃗𝑥(3)?

x1 = time of day

x 2
 =

 te
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ra

tu
re

Found Parking
No Parking

1(x) = |time - noon|
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Solution

x1 = time of day

x 2
 =

 te
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ra

tu
re

Found Parking
No Parking

1(x) = |time - noon|

2(
x)

 =
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- 7
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s|

Found Parking
No Parking
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After the Mapping
▶ The basis functions 𝜑1, 𝜑2 give us our “new”
features.

▶ This gives us a new representation.

▶ In this representation, learning (classification) is
easier.
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Training

▶ Map each training example ⃗𝑥(𝑖) to feature space,
creating new training data:

⃗𝑧(1) = �⃗�( ⃗𝑥(1)), ⃗𝑧(2) = �⃗�( ⃗𝑥(2)), … , ⃗𝑧(𝑛) = �⃗�( ⃗𝑥(𝑛))

▶ Fit linear prediction function 𝐻 in usual way:

𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑
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Training Data in Feature Space

z1

2z

Found Parking
No Parking
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Prediction
▶ If we have ⃗𝑧 in feature space, prediction is:

𝐻𝑓( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑑𝑧𝑑
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Prediction
▶ But if we have ⃗𝑥 from original space, we must
“convert” ⃗𝑥 to feature space first:

𝐻( ⃗𝑥) = 𝐻𝑓(�⃗�( ⃗𝑥))
= 𝐻𝑓( (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑( ⃗𝑥))𝑇 )
= 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + … + 𝑤𝑑𝜑𝑑( ⃗𝑥)
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Overview: Feature Mapping
▶ A basis function can involve any/all of the
original features:

𝜑3( ⃗𝑥) = 𝑥1 ⋅ 𝑥2

▶ We can make more basis functions than original
features:

�⃗�( ⃗𝑥) = ( 𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), 𝜑3( ⃗𝑥) )𝑇
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Overview: Feature Mapping
1. Start with data in original space, ℝ𝑑 .

2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′

3. Map each data point to feature space ℝ𝑑′:
⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑡

4. Fit linear prediction function in new space:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)
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𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)

𝑥1

𝑥2

⋮

𝑥𝑑

𝜑1

𝜑2

⋮

𝜑𝑑′

∑

1
𝑤1
𝑤2

𝑤𝑑′

𝑤0
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Today’s Question
▶ Q: How do we learn non-linear patterns using
linear prediction functions?

▶ A: Use non-linear basis functions to map to a
feature space.
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Lecture 3 | Part 3

Basis Functions and Regression
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By the way...
▶ You’ve (probably) seen basis functions used
before.

▶ Linear regression for non-linear patterns in DSC
40A.
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Example
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Fitting Non-Linear Patterns
▶ Fit function of the form

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4

▶ Linear function of �⃗�, non-linear function of 𝑥.
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The Trick
▶ Treat 𝑥, 𝑥2, 𝑥3, 𝑥4 as new features.
▶ Create design matrix:

𝑋 = ⎛⎜

⎝

1 𝑥1 𝑥21 𝑥31 𝑥41
1 𝑥2 𝑥22 𝑥32 𝑥42
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛 𝑥4𝑛

⎞⎟

⎠

▶ Solve 𝑋𝑇𝑋�⃗� = 𝑋𝑇�⃗� for �⃗�, as usual.
▶ Works for more than just polynomials.
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Another View
▶ We have changed the representation of a point:

𝑥 ↦ (𝑥, 𝑥2, 𝑥3, 𝑥4)

▶ Basis functions:

𝜑1(𝑥) = 𝑥 𝜑2(𝑥) = 𝑥2 𝜑3(𝑥) = 𝑥3 𝜑4(𝑥) = 𝑥4
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A Tale of Two Spaces
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A Tale of Two Spaces
▶ The original space: where the raw data lies.

▶ The feature space: where the data lies after
feature mapping �⃗�

▶ Remember: we fit a linear prediction function in
the feature space.
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Exercise
▶ In feature space, what does the decision
boundary look like?

▶ What does the prediction function surface
look like?

1(x) = |time - noon|

2(
x)

 =
 |t

em
p 

- 7
0 

de
gr

ee
s|

Found Parking
No Parking
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Decision Boundary in Feature Space2

1(x) = |time - noon|

2(
x)

 =
 |t

em
p 

- 7
0 

de
gr

ee
s|

Found Parking
No Parking

2Fit by minimizing square loss
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Prediction Surface in Feature Space
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Exercise
▶ In the original space, what does the decision
boundary look like?

▶ What does the prediction function surface
look like?

x1 = time of day

x 2
 =

 te
m

pe
ra

tu
re

Found Parking
No Parking
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Decision Boundary in Original Space3

x1 = time of day

x 2
 =

 te
m

pe
ra

tu
re

Found Parking
No Parking

3Fit by minimizing square loss
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Prediction Surface in Original Space
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Insight
▶ 𝐻 is a sum of basis functions, 𝜑1 and 𝜑2.

▶ 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)

▶ The prediction surface is a sum of other surfaces.

▶ Each basis function is a “building block”.
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Visualizing the Basis Function 𝜑1

▶ 𝑤0+𝑤1|𝑥1−noon|
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Visualizing the Basis Function 𝜑2

▶ 𝑤0 + 𝑤2|𝑥2 − 72∘|
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Visualizing the Prediction Surface

= +
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Exercise
The decision boundary has a single “pocket” where
it is negative. Can it have more than one, assuming
we use basis functions of the same form? What if
we use more than two basis functions?

x1 = time of day

x 2
 =

 te
m

pe
ra

tu
re

Found Parking
No Parking
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Answer: No!
▶ Recall: the sum of convex functions is convex.

▶ Each of our basis functions is convex.

▶ So the prediction surface will be convex, too.

▶ Limited in what patterns they can classify.

52 / 54



View: Function Approximation

x1 = time of day

x 2
 =

 te
m

pe
ra

tu
re

Found Parking
No Parking

▶ Find a function that is ≈ 1
near green points and ≈ −1
near red points.
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What’s Wrong?
▶ We’ve discovered how to learn non-linear
patterns using linear prediction functions.
▶ Use non-linear basis functions to map to a feature
space.

▶ Something should bug you, though...
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